Por favor, use este identificador para citar o enlazar este ítem: http://infotec.repositorioinstitucional.mx/jspui/handle/1027/542
Self-indexed Motion Planning
UBALDO RUIZ LOPEZ
EDGAR CHAVEZ HERNANDEZ
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://www.researchgate.net/publication/333128463_Self-indexed_motion_planning
Espacios de proximidad
Teoría probabilística de números
Bases de datos probabilísticas
Motion planning is a central problem for robotics. A practical way to address it is building a graph-based representation (a roadmap) capturing the connectivity of the configuration space. The Probabilistic Road Map (PRM) is perhaps the most widely used method by the robotics community based on that idea. A key sub-problem for discovering and maintaining a collision-free path in the PRM is inserting new sample points and connecting them with the k-nearest neighbors in the previous set. Instead of following the usual solution of indexing the points and then building the PRM with successive k-NN queries, we propose an approximation of the k-Nearest Neighbors Graph using the PRM as a self-index. The motivation for this construction comes from the Approximate Proximity Graph (APG), which is an index for searching proximal objects in a metric space. Using this approach the estimation of the k-NN is improved while simultaneously reducing the total time and space needed to compute a PRM. We present simulations for high-dimensional configuration spaces with and without obstacles, showing significant improvement over the standard techniques used by the robotics community.
INFOTEC Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación.
24-03-2020
Artículo
Tellez, Eric S.; Ruiz, Ubaldo; Hoyos, Angello; Chavez, Edgar. (2020). Self-indexed Motion Planning. Researchgate. https://www.researchgate.net/publication/333128463_Selfindexed_motion_planning
Inglés
Normas APA 7.ª edición
OTRAS
Versión publicada
publishedVersion - Versión publicada
Aparece en las colecciones: Artículos

Cargar archivos:


Fichero Tamaño Formato  
Self_indexed_Motion_Planning.pdf1.49 MBAdobe PDFVisualizar/Abrir