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Abstract

Motion planning is a central problem for robotics. A practical way to address

it is building a graph-based representation (a roadmap) capturing the connectiv-

ity of the configuration space. The Probabilistic Road Map (PRM) is perhaps

the most widely used method by the robotics community based on that idea.

A key sub-problem for discovering and maintaining a collision-free path in the

PRM is inserting new sample points and connecting them with the k-nearest

neighbors in the previous set. Instead of following the usual solution of indexing

the points and then building the PRM with successive k-NN queries, we pro-

pose an approximation of the k-Nearest Neighbors Graph using the PRM as a

self-index. The motivation for this construction comes from the Approximate

Proximity Graph (APG), which is an index for searching proximal objects in a

metric space. Using this approach the estimation of the k-NN is improved while

simultaneously reducing the total time and space needed to compute a PRM. We

present simulations for high-dimensional configuration spaces with and without

obstacles, showing significant improvement over the standard techniques used

by the robotics community.
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1. Introduction

Motion planning is a fundamental research topic in robotics, and it has

received considerable attention over the last decade [1, 2, 3]. The problem

of navigating through a complex environment appears in almost all robotics

applications. This problem also arises and is relevant in other domains such as5

computational biology, autonomous exploration, search and rescue, etc.

A central concept to the motion planning problem is the configuration space

[1, 2, 3]. The configuration space provides a powerful abstraction that converts

complicated geometric models and rigid-body transformations into the general

problem of computing a path that traverses a manifold of dimension n if the10

robot has n degrees of freedom. Each dimension corresponds to the value of

the parameter governing a joint or degree of freedom. Even if robots operate in

3D space, a single robotic arm with fingers can have, say, 40 dimensions in the

configuration space.

In [4], it has been proved that even in simple cases is very expensive to15

compute an exact solution to the motion planning problem. For that reason,

current methods are focused on finding an approximate solution to the problem.

Among them, sampling-based methods are the most widely used for motion and

path planning. Instead of using an explicit representation of the obstacles in

the configuration space, which may result in an excessive computational cost,20

sampling-based methods rely on a collision detection module providing infor-

mation about the feasibility of the computed trajectories.

Two favorite sampling-based techniques are Probabilistic Road Maps (PRMs)

[5] and Rapidly-exploring Random Trees (RRTs) [6] which have been shown to

work well in practice and possess theoretical guarantees such as probabilistic25

completeness1. One of the major drawbacks of those algorithms is that they

made no claims about the optimality of the solution. Recently, Karaman et

1The probability of finding a feasible solution tends to one as the number of samples

increases.
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al. [7] proved that both algorithms are not asymptotically optimal2. To ad-

dress that limitation, they proposed a new class of asymptotically optimal path

planners named PRM* and RRT* and proved that both are probabilistically30

complete and asymptotically optimal.

The PRM and its asymptotically optimal variant PRM*, maintain a collision-

free roadmap in the configuration space. The roadmap is a graph with nodes

corresponding to collision-free sample configurations. Edges will match collision-

free roads to travel between configurations. Smooth movements in the robot35

require dense sampling, and an increase in the degrees of freedom requires ex-

ponentially many more samples. Similarly, as the number of obstacles and the

volume of their representation in the configuration space increases, the number

of samples needed to improve the approximation also increases. The algorithm

to build the roadmap consists of linking new inserted points with its k-nearest40

neighbors in the current sample.

For low-dimensional spaces and a small number of nodes in the roadmap,

the k-nearest neighbor search is commonly performed using a naive brute force

approach, where the distances to all nodes are computed to find the neighbors.

For a large number of vertices, typically a tree-based subdivision of the config-45

uration space is used to compute the k-nearest neighbors. In this category, the

kd-tree is the most widely used, which works by creating a recursive subdivision

of the configuration space into two half-spaces [8]. The kd-tree can be con-

structed in O(n log n) operations and the query time complexity is O(dn1−
1
d ),

where n is the number of nodes and d is the dimension of the space.50

In the literature, it is well-known that the algorithms for k-nearest neighbor

search degrade their performance to a sequential search as the intrinsic dimen-

sionality of the data increases [9]. Also, most of the algorithms for k-nearest

neighbor search are designed to perform fast queries, but they do not consider

the time it takes to process the database and create the search data structure.55

2 When the computed solution converges to the optimal solution as the number of samples

increases.
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For motion-planning algorithms, the relevant measure of complexity is the total

time, which includes the time spent in building the index and all the queries.

The above observation poses a unique difficulty in selecting a proper index for

the task because usually the cost of indexing is amortized over a large number

of queries.60

The key idea of our contribution is to avoid the construction of auxiliary data

structures for performing the k-nearest neighbor search, as it is traditionally

done. We borrow the idea of Approximate Proximity Graphs [10, 11] designed

for searching in general metric spaces, and we intend to use it as a representation

of the roadmap itself. Our experiments show that this approach reduces the65

overall time to construct the probabilistic roadmap.

We have centered our efforts on improving the efficiency of the PRM given

the close resemblance between the construction of the PRM and the APG.

In both cases, the graph is constructed by connecting the nodes with its k-

nearest neighbors. Since the nodes are processed in random order in the APG,70

this favors the presence of long-length links between nodes at early stages of

the process; those links are necessary to improve the precision and speed of

the k-nearest neighbors search. Later on, the long-length links, which are not

desirable for the PRM, are removed using a reinsertion procedure. It is relevant

to mention that the APG approach cannot be directly applied to the RRT, since75

its construction algorithm does not favor the presence of long-length links at any

stage of the process. The primary goal of the RRT is growing up a tree from

an initial to a final configuration of the robot in an incremental way, while the

PRM builds a roadmap of the entire configuration space that allows traveling

between several configurations.80

For motion-planning problems, it is critical to maximize the number of sam-

pled configurations (nodes) per time step. Usually, a large quantity of nodes

in the roadmap implies a better quality of the trajectories in the configuration

space. Since these algorithms are probabilistically complete, a large number

of nodes also signifies a higher probability of finding a solution [12, 13]. If85

the performance of the k-nearest neighbor search is improved then, more nodes
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can be added to the roadmap in a fixed amount of time, increasing the overall

performance of the probabilistic roadmap algorithms.

2. Related work

Sampling-based motion planners use the k-nearest neighbor search heavily.90

The planners employ auxiliary search data structures to find and connect config-

urations to compute a motion plan. The literature registers several approaches

to undertake the searching problem. One of the most popular is the spatial

partitioning of the data. Examples of this type of algorithms are kd-trees[8],

quadtrees [8] and vp-trees [14]. These data structures can efficiently handle the95

exact k-nearest neighbors search in lower dimensions.

Yershova and LaValle [15] proposed an extension of the kd-tree to manage Rd

(the d-dimensional Euclidean space), Sd (the d-dimensional sphere), the group

of all rotations about the origin of the three-dimensional Euclidean space SO(3),

and the Cartesian product of any number of these spaces. Similar to kd-trees100

for Rd, their approach splits SO(3) using rectilinear axis-aligned planes created

by a quaternion representation of rotations. In [16], the authors report that the

previous strategy performs well in many cases, but rectilinear splits produce

inefficient partitions of SO(3) near the corners of the partitions. They propose

a method that eschews rectilinear splits in favor of splits along the rotational105

axes, resulting in a more uniform partition of SO(3).

A strategy to improve the efficiency of kd-trees is presented in [17]. The

authors describe a box-based subdivision of the space that allows focusing the

search effort only in specific regions of the subdivision. In their paper, they

show that the total complexity is lowered, at least in theory.110

Non-Euclidean spaces, including SO(3), can be searched by general nearest

neighbor search data structures such a GNAT [18], cover-trees [19], and M-trees

[20]. These data structures generally perform better than a sequential search.

However, these methods are usually outperformed by kd-trees in practice [21].

Plaku and Kavraki [22] present a quantitative analysis of the performance115
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of exact and approximate nearest neighbor search algorithms on increasingly

high-dimensional problems in the context of sampling-based motion planning.

Their analysis determines that after a critical dimension, exact nearest neigh-

bor search algorithms examine almost all samples, becoming impractical for

sampling-based algorithms when a large number of samples is required. This120

behavior motivates the use of approximate algorithms [21] which trade-off ac-

curacy for efficiency.

Sandström et al. [23] explored an alternative direction for expediting the

nearest neighbor search based on workspace3 connectivity. They propose an

algorithm which employs a workspace decomposition to select candidate neigh-125

bor configurations that are topologically relevant as a pre-processing step for a

nearest neighbor search algorithm.

3. Background

In this section, we review the standard algorithm for constructing the PRM.

We will start with some formal definitions used in the description of the algo-130

rithms.

Let X be the configuration space where d ∈ N is the dimension of the con-

figuration space. We denote as Xobs to the obstacle region, and Xfree as the

obstacle-free space. The initial configuration xinit is an element of Xfree, and

the goal region Xgoal is a subset of Xfree. A collision-free path σ : [0, 1]→ Xfree135

is a continuous mapping to the free space. It is feasible if σ(0) = xinit and

σ(1) ∈ Xgoal. The goal of motion-planning algorithms is to compute a feasible

collision-free path.

Given a graph G = (V,E) where V ⊂ Xfree, a vertex v ∈ G, and k ∈ N, the

function Nearest Neighbors (G, v, k) returns the k-nearest vertices in G to v.140

Given two points x1, x2 ∈ Xfree, a boolean function Collision Check(x1, x2)

returns true if the line segment between x1 and x2 lies in Xfree and false

3The workspace of a robot is the space in which the robot works and can be either a 3D

space or a 2D surface
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otherwise.

The PRM constructs a roadmap represented as a graph G = (V,E) whose

vertices are samples from Xfree and the edges are collision-free trajectories be-145

tween vertices (see Fig. 1). The PRM initializes the vertex set with n samples

from Xfree and attempts to connect the k-nearest points. The PRM is described

in Algorithm 1. From [7], we have that for the asymptotically optimal variant

PRM*, k = e(1 + 1/d) log(|V |) where d is the dimension of the configuration

space, thus k = 2e log(|V |) is a good choice for all applications. Here, |V |150

denotes the number of vertex in G.

Algorithm 1 k-nearest PRM

Input: n samples from Xfree.

Output: A roadmap G = (V,E) in Xfree.

1: V ← {sample freei}i=1,...,n

2: E ← ∅

3: for each v ∈ V do

4: U ← Nearest Neighbors(G, v, k)

5: for each u ∈ U do

6: if Collision Check(v, u) then

7: E ← E ∪ {(v, u), (u, v)}

8: end if

9: end for

10: end for

11: return G

A popular variant of the PRM is the lazy-collision PRM [24, 25] or its asymp-

totically optimal version lazy-collision PRM*. In those variants, the Collision

Check procedure in line 6 of Algorithm 1 is omitted during the construction

stage. Thus, the lazy-collision PRM or lazy-collision PRM* are built just con-155

necting each node to its k-nearest neighbors. During the query stage, every-time

a path between two vertices is searched and found in the graph; it is validated

to detect if at least one of its edges is in a collision with an obstacle. If one of

7



(a) Sampling. (b) Finding k-nearest neighbors.

(c) Collision checking. (d) PRM

Figure 1: Construction of a Probabilistic Roadmap (PRM).

the edges in the path is in a collision, then that edge is erased from the graph,

and a new path is searched again. We will use this approach of the PRM* latter160

in our paper.

4. Approximate proximity graph

In this section, we describe the Approximate Proximity Graph (APG), a

search data structure introduced by Malkov et al. in [10, 11]. This data structure

has attracted a lot of interest in the similarity search community because of165

its simplicity. It is constructed with successive insertions, rendering excellent

searching times in high-dimensional spaces. The main idea behind the APG is to

build a search graph where each node is connected to its approximate k-nearest

neighbors.
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A take out from studying the APG and other generalizations of the same idea170

is that multiple local searches give a good global approximation to the true k-

nearest neighbors of the query. Local searches use two types of links, long-length

and short-length. Long-length links are responsible for fast searches, while local

(short-length) links are responsible for accuracy. Both types of links are a con-

sequence of the density. Long-length links correspond to low-density sampling175

and appear in the early stages of the APG construction, while short-length links

appear when the population of nodes is dense enough. This becomes more clear

in the construction depicted in Algorithm 2 and Fig. 2. Note that this algorithm

requires a definition of the function Nearest Neighbors which computes the k-

nearest neighbors in the graph. From [10], the k-nearest neighbors are found180

following a greedy approach using the graph itself, as described in Algorithm 3.

Algorithm 2 APG

Input: A set U of n elements.

Output: A graph G = (V,E) containing the k-nearest neighbors of each ele-

ment in U .

1: V ← ∅

2: E ← ∅

3: for each u ∈ U do

4: Xnear ← Nearest Neighbors(G, u, k)

5: V ← V ∪ {u}

6: for each v ∈ Xnear do

7: E ← E ∪ {(u, v), (v, u)}

8: end for

9: end for

10: return G

Greedy search does not guarantee to find the true k-nearest neighbor. The

result depends on the initial vertex where the search started. To increase the

probability of finding the proper nearest neighbor, m local searches, initiated

from random vertices of the graph, can be used. This method is described in185
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Algorithm 3 Greedy Search

Input: A graph G = (V,E), an initial vertex vinit and a query q.

Output: A vertex vmin ∈ V whose distance to q is a local minimum.

1: vmin ← vinit

2: dmin ←Distance(vmin, q)

3: vnext ← NIL

4: Xfriends ← {u ∈ V |(u, vmin) ∈ E}

5: for each ufriend ∈ Xfriends do

6: dfriend ←Distance(ufriend, q)

7: if dfriend < dmin then

8: dmin ← dfriend

9: vnext ← ufriend

10: end if

11: end for

12: if vnext is not NIL then

13: return Greedy Search(G, vnext, q)

14: else

15: return vmin

16: end if

10



(a) Data points (the elements are pro-

cessed in random order).

(b) First nodes of the graph connected

with their k-nearest neighbors.

(c) Long-length links appear (a small

number of nodes have been inserted in

the graph).

(d) Short-length links appear (a larger

number of nodes have been inserted in

the graph).

Figure 2: Construction of an Approximate Proximity Graph (APG).

Algorithm 4. This algorithm requires the function Random Vertex(G) which

randomly samples a vertex from G.

Since the initial vertex is chosen at random, there is a probability p of finding

the true nearest neighbor for a particular element q. This probability is non-

zero because it is always possible to choose the exact nearest neighbor as the190

initial vertex. Let us simplify the model by assuming independent identically

distributed random variables; thus if for a fixed query element q the probability

of finding the true nearest neighbor in a single search attempt is p, then the

11



probability of finding the true nearest neighbor after m attempts is 1−(1−p)m.

Therefore, the precision of the search increases exponentially with the number of195

search attempts. Ifm is comparable to |V |, the algorithm becomes an exhaustive

search, assuming the initial points are sampled without replacement. If G has

the small-world properties [26] then it is possible to choose a vertex in a random

number of steps proportional to log n, maintaining an overall logarithmic search

complexity.200

Algorithm 4 Multi Search

Input: A graph G = (V,E), a query q, and a number m of restarts.

Output: A candidate set U of nearest neighbors of q in G.

1: U ← ∅

2: for i = 1, . . . ,m do

3: vinit ← Random Vertex(G)

4: vmin ← Greedy Search(G, vinit, q)

5: if vmin /∈ U then

6: U ← U ∪ {vmin}

7: end if

8: end for

9: return U

An essential parameter of the APG is the number of pseudo-nearest-neighbors

connected to each newly added vertex. A large number of pseudo-nearest-

neighbors increases the accuracy, while at the same time decreases the search

speed. Note that this parameter also impacts the construction time of the data

structure. Malkov et al. suggest k = 3d where d is the dimension of the search205

space as a good choice for database applications where the cost to build the APG

is amortized over the number of queries being solved after the construction.

In [11], Malkov et al. propose a more sophisticated algorithm to perform

the search in the APG. In this algorithm, a different condition is used. The

algorithm iterates on not previously visited elements close to the query, i.e.,210

those for which the edge list has not been verified. The algorithm stops when

12



at the next iteration the k-nearest results to the query do not change. The list

of previously visited elements during the search is shared preventing repeated

distance evaluations. The search algorithm is described in Algorithm 5.

5. Our approach215

A natural connection can be made between the APG and the PRM. Both

the APG and the PRM aim at connecting the k-nearest neighbors of the sample

points (see Figs. 1d and 3). In the literature, the PRM is built using an auxiliary

data structure, which needs to be constructed beforehand. In this work, we will

not use an auxiliary data structure; we will instead use the same PRM for220

searching, adapting the APG algorithm for our purposes. Special care is needed

for the PRM algorithm because two neighbors are connected if and only if a

free-collision path exists between them (refer to Fig. 1). Note that in the APG

there is no notion of obstacles in the space (see Fig. 3).

Figure 3: Standard APG constructed with the sample points in Fig. 1.

Please notice that in the configuration space, long-length edges have a higher225

probability of collision with obstacles. Thus most of them are not considered

in the graph created by the PRM. On the other hand, long-length edges are

crucial to maintaining the small-world navigation properties of the APG, in

turn, responsible for the logarithmic scaling of the search. To keep the small-

world properties, we propose to use the lazy-collision [24, 25] version of the230

PRM*. In this case, the Collision Check procedure in line 6 of Algorithm 1 is
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Algorithm 5 Tabu Search

Input: A graph G = (V,E), a query q, and a number m of restarts.

Output: A candidate set U of nearest neighbors of q in G.

1: Let U be an empty min-queue of fixed size k.

2: Let C be an empty min-queue.

3: Let r be the updated distance of the furthest element to q in U . An empty

U defines r =∞.

4: S ← ∅

5: for i = 1, . . . ,m do

6: c←Random Vertex(V − S)

7: S ← S ∪ {c}

8: Append (Distance(c, q), c) into U and C

9: loop

10: Let (rb, best) be the nearest pair in C

11: Remove best from C

12: if rb > r then

13: break loop

14: end if

15: Xfriends ← {u ∈ V |(u, best) ∈ E}

16: for each ufriend ∈ Xfriends do

17: if ufriend /∈ S then

18: S ← S ∪ {ufriend}

19: Append (Distance(q, ufriend), ufriend) to U and C

20: end if

21: end for

22: end loop

23: end for

14



not applied during the execution, thus for a given set of vertices the constructed

graph using the lazy-collision PRM* is the same as the one computed using the

APG. The edges in the graph, built using the lazy-collision PRM*, are only

removed once a path between two vertices in the graph is found and validated.235

Another aspect to take into account is the number of nearest neighbors that

are connected to each vertex. In the case of the PRM*, the value of k = 2e log(n)

has been suggested to achieve good results in all applications [7]. However, the

recommended parameter of the APG is k = 3d, with d the dimension of the

search space [11]. As k increases the quality of the search improves but the240

time to construct the graph also increases. In our case, we are interested in

maximizing the number of vertices added to the graph in a fixed amount of

time, without hurting the precision of the k-nearest neighbors of each added

vertex. Thus, we need to find a suitable value of k to achieve our goals.

To engage the problems described above we propose a two-step procedure.245

First, we build a standard APG (see Fig. 4a), which naturally contains long-

length links, and then reinsert all nodes in the graph. This counter-intuitive

step removes long-length links because when an old node is reinserted in the

final graph, the density is higher and the precision of the local search increases

(see Fig. 4b). After the reinsertion, it is very likely that the long-length edges250

will be removed and the final graph will not be as efficient as the standard APG

for k-nearest neighbor searching. The lazy-collision PRM* obtained with this

procedure will be closer to the true k-nearest neighbors graph. This strategy

also allows to use a value of k smaller than the one suggested by Malkov et al.

in [11] improving the time of construction and maintaining a good precision. In255

this paper, we test two approaches for reinserting the nodes. In the first one,

Tabu search, described in Algorithm 5, is used to update the neighbors of each

node. In the second approach, each node verifies if the second-order-neighbors

are a better approximation. The details about the selection of the parameters

and the experiments performed will be discussed in the next section.260

15



(a) Standard Approximate Proximity

Graph (APG).

(b) Graph after reinserting all nodes in

the original APG.

Figure 4: Reinserting nodes in the Approximate Proximity Graph (APG).

6. Experiments

In this section, we present the results of using the proposed heuristics for the

k-nearest neighbors search in the construction of the lazy-collision PRM*. Our

results are compared with the ones obtained using three methods: 1) sequential

search, 2) exact kd-trees and 3) approximate kd-trees. In the literature, we found265

that those methods are the standard in the robotics community to perform the

search of the k-nearest neighbors in the construction of the PRM*.

To study the performance of our proposal, we define three metrics. The first

one is called the speedup, which is the ratio between the time ts to construct

a lazy-collision PRM* using a sequential search (ground truth) for finding the

k-nearest neighbors and the time ta to construct the same data structure using

an alternative algorithm for finding the k-nearest neighbors, we have

speedup =
ts
ta

Fast algorithms will have a speedup bigger than one, while algorithms slower

than sequential search will have a fractional speedup.

The second metric is called the precision, and it gives a measure of the quality

of the solution obtained with the approximate search algorithms presented in
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this paper. Let Ai be the set of k-nearest neighbors computed by one of the

alternative algorithms for a vertex i of the graph, and Bi be the corresponding

set of k-nearest neighbors computed by the sequential search (ground truth).

Let |Ai ∩Bi| the cardinality of Ai ∩Bi and |Bi| the cardinality of Bi. We have

that

precision =
1

n

n∑
i=1

|Ai ∩Bi|
|Bi|

where n is the number of vertices in the graph. A precision value closer to one270

implies a better approximation of the solution.

The third metric is called the proximity ratio, and it is a comparison between

the distances from the approximate k-nearest neighbors to a vertex i of the graph

and the distances from the true k-nearest neighbors to that vertex. Let Ni be

the set of k-nearest neighbors of the vertex i. The average distance from the

vertex i and its k-nearest neighbors is given by

avg dist(i,Ni) =
1

k

k∑
j=1

dist(i, j)

where d(i, j) denotes the distance between the vertex i and the j-th element in

Ni. Let Ai be the set of k-nearest neighbors computed by one of the alternative

algorithms for a vertex i, and Bi be the set of k-nearest neighbors computed by

the sequential search. The proximity ratio is given by

proximity ratio =
1

n

n∑
i=1

avg dist(i, Ai)

avg dist(i, Bi)

where n is the number of vertices in the graph. Note that as the proximity

ratio approaches one, the approximate k-nearest neighbors converge to the true

k-nearest neighbors.

In the next experiments, we use uniform randomly generated samples from275

a space X = (−1, 1)d where d is the dimension of the space.

We start our analysis with a characterization of the exact kd-tree perfor-

mance in high-dimensional spaces. Fig. 5 shows the behavior of using the exact

kd-tree in the construction of a lazy-collision PRM* in different space dimen-

sions as the number of samples grows. In this figure, we can observe that as the280
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space dimension increases the speedup of the lazy-collision PRM* based on an

exact kd-tree decreases, becoming worse than the lazy-collision PRM* based on

a sequential search. Note that in most cases, after reaching a spatial dimension

of 12, the exact kd-tree starts to present an overhead compared to a sequential

search due to the additional logical operations involved in the search.285
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Figure 5: The speedup of constructing a lazy-collision PRM* using an exact kd-tree for the

k-nearest neighbor search. Each curve corresponds to a different sample set size.

In the next experiment, we analyze the performance of Algorithms 4 (Greedy

multi-search) and 5 (Tabu search) for computing the k-nearest neighbors in the

construction of a lazy-collision PRM*. Following the recommendation of Malkov

et al., we set k = 3d, where d is the space dimension. We also tested the value

k = 2e log n by Karaman et al. in [7], for the construction of a PRM*. We use290

a set of 10000 samples in 4, 8, 12, 16, 20, 25, 30, 40 and 50 dimensions. We set

the number m of restarts to 1 for Tabu search and 10, 20 and 30 for Greedy

multi-search. Figures 6, 7 and 8 show the results of this experiment. As the

number m of restarts increases in Greedy multi-search, the precision increases

at the expense of the speedup. Also, it is apparent that for both algorithms,295

as the dimension increases, the best precision, and the best proximity ratio

are obtained for k = 3d. However, the value of k = 3d also produces the

lowest speedup, in many cases worst than a sequential search, which makes it

impractical for our purpose. The results also confirm that Algorithm 5 produces

a better precision and a better proximity ratio in comparison to Algorithm 4.300

On the other hand, Algorithm 5 has the worst speedup.
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Figure 6: Precision of the approximation using the Greedy Multisearch and Tabu search.
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Figure 7: Speedup of the approximation using the Greedy Multisearch and Tabu search.
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Figures 9a, 9b, and 9c show the results of constructing an initial lazy-collision

PRM* and refine the graph by reinserting all nodes updating the information

about their k-nearest neighbors. We present the results of using two approaches

for reinserting the nodes. In the first one, Tabu search is used to update the305

neighbors of each node (denoted as APG2x). In the second approach, each node

verifies if the second-order-neighbors can be considered as a better approxima-

tion (denoted as APGlvl2). In this experiment, 100000 random samples were

used for constructing the lazy-collision PRMs* in 4, 8, 12, 16, 20, 25, 30, 40 and

50 dimensions. In the construction of the graph we selected k = 2e log n. The310

results of using a standard APG with Tabu search (APG1x) and an approximate

kd-tree are also included.

From Figs. 9a, 9b and 9c, it is possible to conclude that our algorithm

APG2x has a better speedup than using a sequential search, an exact kd-tree

or an approximate kd-tree achieving a similar precision for finding the k-nearest315

neighbors. Another interesting property is that even if the precision decreases

as the dimension increases, the value of the proximity ratio in our proposal

APG2x remains closer to one when compared to APG1x and APGlvl2. In other

words, the approximate k-nearest neighbors computed by our algorithm are

closer to the true k-nearest neighbors. We can expect that the trajectories in320

the lazy-collision PRM* produced with our proposal APG2x be similar to the

ones obtained using an exact method for the k-nearest neighbors search like an

exact kd-tree and sequential search.

In Figs. 10 and 11, we can observe that our proposal APG2x achieves similar

results for the precision and proximity ratio at each dimension as the number325

of sample increases. Figs. 10b and 11b show an improvement of the speedup

as the number of samples increases. This an expected behavior, since it takes

more time to compute the k-nearest neighbors with a sequential search.

A natural concern when using an approximate algorithm for motion planning

is the quality of the computed trajectories, this is analyzed in the next experi-330

ment. Here the quality measure will be the total length of the paths obtained

with the lazy PRM*. In this experiment, we consider six robots moving inside
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Figure 9: Precision, speedup, and proximity ratio of the two approaches for reinserting the

nodes using a neighborhood k = 2e logn.

a square environment in 2D with seven obstacles (see Fig. 12). The dimen-

sion of the configuration space is 12. We sample 100000 configurations in the

free space and construct five lazy PRM* using sequential scan, an approximate335

kd-tree, tabu search (APG1x), and the two proposed approaches (APG2x and

APGlvl2) for finding the k-nearest neighbors. We perform two experiments. In

the first one, we compute the trajectories ignoring the obstacles (see Fig. 13a),

thus the samples are uniformly distributed. In the second one, we compute the

trajectories considering the obstacles (see Fig. 13b), hence the samples are not340

uniformly distributed.

The results without obstacles are depicted in Fig. 13a. For each robot, our

approach produces trajectories with length almost identical to the ones obtained

using a probabilistic roadmap constructed using a sequential scan, the ground
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truth. In Fig. 13b, we can observe that when obstacles are considered in most345

cases our approach also produces the closest trajectories to the ones obtained

performing a sequential scan during the construction.

The two experimental results presented above are the outcome of a better

estimation of the k-nearest neighbors with our proposed approaches.
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Figure 10: Precision, speedup, and proximity ratio of the approximation for different sample

sizes using a neighborhood k = 2e logn and Tabu search reinserting the nodes (APG 2x).

7. Conclusions and Future work350

In this paper, we addressed the problem of constructing and maintaining a

probabilistic roadmap in high-dimensional configuration spaces, without using

an external index. We proposed a method that allows using the graph rep-

resenting the roadmap as a search data structure for computing approximate

k-nearest neighbors. Our approach reduces the time spent in the construction355
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Figure 11: Precision, speedup, and proximity ratio of the approximation for different sample

sizes using a neighborhood k = 2e logn and verifying for each node if the neighbors of its

neighbors can be considered as a better approximation.

and saves memory since no auxiliary data structures are needed. We have shown

experimentally that in high dimensional spaces, our method outperforms three

methods widely used in the robotics community: 1) sequential search, 2) ex-

act kd-trees and 3) approximate kd-trees. Our results also show that we can

compute trajectories of similar quality to the ones obtained using the previous360

approaches in the construction of probabilistic roadmaps.

There are other applications, outside robotics, of computing a good approxi-

mation of the k-Nearest Neighbors Graph for a set of points. The algorithm can

be used for example in point cloud registration, density estimation, and outlier

detection. Each application poses unique challenges and should be studied in365

future work.
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(a) Setup (b) Computed trajectories

Figure 12: Six robots moving inside a square environment in 2D with seven obstacles. The

initial positions correspond to the color points in the upper left corner and the final positions

to the color points in the bottom right corner.
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Figure 13: Length of the trajectories obtained for each robot using different methods for

computing the k-nearest neighbors in the construction of the probabilistic roadmap. The

results for each method are grouped by robot id.
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