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Resumen

El rápido crecimiento del aprendizaje automático en los últimos años ha llevado al

desarrollo de numerosos algoritmos y modelos que requieren métodos de evaluación

efectivos. Las competiciones entre algoritmos, que comparan el rendimiento de los

modelos en condiciones similares, se han convertido en una herramienta esencial en

este proceso. Sin embargo, la mayoría de la literatura existente se centra en métodos

estadísticos y métricas tradicionales para la comparación de algoritmos, sin tener en

cuenta los aspectos únicos de los entornos competitivos.

Esta tesis introduce nuevas herramientas y metodologías diseñadas para

abordar los desafíos específicos que plantean las competiciones algorítmicas. Los

enfoques propuestos tienen como objetivo facilitar la comparación justa y precisa de

algoritmos en competencia, considerando las dinámicas particulares de los entornos

competitivos. A través de una revisión exhaustiva de los métodos existentes, mejoras a

las técnicas actuales y la introducción de herramientas novedosas, esta investigación

contribuye al desarrollo de un marco más robusto para la evaluación de algoritmos

en competiciones. Se espera que los resultados mejoren el proceso de evaluación,

haciéndolo más adaptable y preciso en escenarios impulsados por la competencia.



Abstract

The rapid growth of machine learning in recent years has led to the development

of numerous algorithms and models that require effective evaluation methods.

Competitions between algorithms, which compare the performance of models under

similar conditions, have become an essential tool in this process. However, most

existing literature focuses on traditional statistical methods and metrics for algorithm

comparison without considering the unique aspects of competitive environments.

This thesis introduces new tools and methodologies designed to address the

specific challenges posed by algorithmic competitions. The proposed approaches aim

to facilitate the fair and accurate comparison of competing algorithms, considering

the particular dynamics of competitive settings. Through a comprehensive review of

existing methods, improvements to current techniques, and the introduction of novel

tools, this research contributes to developing a more robust framework for evaluating

algorithms in competitions. The results are expected to enhance the evaluation

process, making it more adaptable and precise for competition-driven scenarios.
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Glossary

Algorithmic Competition A structured event where algorithms or models are

evaluated and compared based on their performance on a defined task under

specific conditions.

Benchmarking The process of comparing systems, algorithms, or methods against a

standard or a set of metrics to evaluate their performance.

Bootstrapping A statistical resampling technique that involves repeatedly sampling

with replacement from a dataset to estimate the distribution of a statistic.

Classification A supervised learning task where the goal is to assign a label or category

to input data based on learned patterns.

Confidence Interval A range of values, derived from data, that is believed to contain

the true value of a parameter with a specified level of confidence.

Cross-Validation A resampling method used to evaluate the generalizability of a

model by dividing data into training and testing sets multiple times.

Crowdsourcing the practice of engaging a group of people for a common goal, often

involving innovation, problem-solving, or efficiency.

Evaluation Metric A quantitative measure used to assess the performance of an

algorithm, model, or system. Examples include precision, recall, and F1-score.

Familywise Error Rate (FWER) The probability of making one or more Type I errors

(false positives) when conducting multiple statistical tests.

Gold Standard The authoritative or best-known standard used as a benchmark for

comparison in experiments or evaluations.



Machine Learning (ML) A field of artificial intelligence that focuses on developing

algorithms that can learn from and make predictions based on data.

Permutation Test A non-parametric statistical test that involves rearranging the data

to assess the significance of a result without relying on specific distributional

assumptions.

Resampling Techniques Methods used to assess model performance or variability by

repeatedly drawing samples from a dataset. Examples include bootstrapping and

cross-validation.

Statistical Significance A determination that an observed effect or relationship in data

is unlikely to have occurred by chance, according to a predefined significance

level.

Supervised Learning A type of machine learning where models are trained on labeled

data to predict outcomes for new, unseen inputs.

Type I Error The incorrect rejection of a true null hypothesis, also known as a false

positive.

Type II Error The failure to reject a false null hypothesis, also known as a false

negative.

Unsupervised Learning A type of machine learning where models identify patterns or

structures in data without predefined labels or categories.



Introduction

Context and Background

Building upon the concepts of Crowdsourcing and academic competitions, the

next chapter delves into the methodologies and structures that define modern

challenges. Exploring the critical aspects of problem definition, dataset selection,

and evaluation metrics provides a comprehensive framework for organizing and

analyzing competitions. This chapter highlights the significance of fair and robust

evaluations, essential for fostering innovation and advancing research in competitive

environments.

Crowdsourcing and Challenges

Crowdsourcing, popularized by Jeff Howe in 2006, involves leveraging a geographically

dispersed group to achieve common goals such as innovation, problem-solving, or

efficiency. While historically rooted, it has gained prominence in academia, business,

and humanitarian efforts.

Key examples include Wikipedia for collaborative content creation, Amazon

Mechanical Turk for micro-tasks, and the Galaxy Zoo project, which accelerates

scientific research through public participation [14, 40, 47].

Benefits include cost efficiency, speed, and access to diverse expertise, making

it invaluable for tasks requiring scalability and creativity. However, ensuring quality,

coordinating contributors, and addressing ethical concerns like fair compensation and

privacy remain critical [32, 63].

Crowdsourcing in Research

Academic competitions refer to contests or challenges where students or researchers

compete with each other to solve problems or develop innovative projects under
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certain constraints [1, 54]. These competitions can be driven or enriched by the

use of Crowdsourcing strategies combined with Benchmarking, where collaboration

and competition intertwine to foster innovation and academic excellence. These

competitions have become benchmarks that continuously push the state of the art in

science and technology, such as the ImageNet [60] and VOC competitions [27].

Academic competitions, also known as challenges, are structured contests

designed to address specific scientific or technological problems by leveraging the

collective expertise and innovative capabilities of a global community of researchers

and practitioners. These competitions provide a platform for participants to develop,

test, and benchmark their solutions in a competitive environment, fostering rapid

advancements and collaborative problem-solving [26, 40].

One of the most notable areas where academic competitions have had a

profound impact is machine learning. These competitions have catalyzed significant

breakthroughs by providing standardized datasets and evaluation metrics, thereby

enabling the rigorous comparison of algorithms and techniques. Platforms such

as Kaggle, the Conference on Neural Information Processing Systems (NeurIPS)

competition track, and the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) have been instrumental in this regard [14, 60].

Machine learning competitions serve as a crucial driver for innovation and

performance improvements. They typically involve tasks such as Image Classification,

natural language processing, and predictive modeling, each associated with specific

datasets and performance benchmarks. The competitive nature of these events

encourages participants to push the boundaries of existing methodologies and develop

novel approaches.

The NeurIPS competition track, for example, has hosted a variety of challenges

that have led to advancements in areas like deep reinforcement learning, automated

machine learning (AutoML), and natural language understanding. The ImageNet

competition, in particular, played a significant role in developing and popularizing

deep learning techniques, especially convolutional neural networks (CNNs) [43].
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These competitions not only advance the state of the art but also promote

reproducibility and transparency in research. Providing access to standardized

datasets and clearly defined evaluation criteria ensures that results are comparable and

verifiable, which is essential for scientific progress [36].

Structure and Methodology of Challenges

Challenges are organized events that bring together participants to solve specific

problems or achieve predefined goals within a given timeframe. These events are

characterized by their structured approach, which typically includes a clear problem

statement, standardized datasets, evaluation metrics, and a framework for submission

and assessment [26, 40].

Structure

The structure of challenges generally involves several key components. Firstly, the

problem definition outlines the task to be solved. This is followed by the provision of

datasets, which participants use to develop and test their solutions. The datasets are

often divided into training and testing sets for unbiased evaluation. Next, Evaluation

Metrics are defined to measure the submitted solutions’ performance objectively.

These metrics vary depending on the nature of the problem but commonly include

accuracy, precision, recall, and F1-score (See appendix A.1) for Classification tasks.

Methodology

A classical challenge scheme involves several critical steps. Figure 1 illustrates

the challenge scheme, showcasing the flow of processes in a typical competition

framework. From left to right, the flow moves from the reality or problem to solve,

obtaining a reality sample until competitors receive the training and validation data

(with labels) and the test data (without labels). From right to left, the path follows the

predictions submitted by the competitors for evaluation, where organizers compare

them with the Gold Standard. This systematic flow ensures fairness and rigor in

assessing algorithmic performance.
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Figure 1: Challenge scheme. From left to right, the flow moves from the desired reality,
obtaining a reality sample until competitors receive the training and validation data
(with labels) and the test data (without labels). From right to left, the path follows the
predictions for evaluation, where organizers compare them with the Gold Standard.

Initially, designing the challenge requires defining the problem scope, selecting

appropriate datasets, and establishing evaluation criteria. This step is crucial as it sets

the foundation for the entire competition [26, 36]. During this phase, organizers must

clearly define the objectives and expected outcomes, ensuring that the challenge aligns

with the overarching goals of the field. Choosing datasets representative of real-world

problems and suitable for the tasks at hand is also essential. Evaluation criteria must be

carefully crafted to accurately measure the desired performance aspects. The dataset

is typically divided into 80% for the training set provided to participants and 20% for

the evaluation set used to assess the submissions [12].

Following the design phase, launching the challenge involves disseminating

information to potential participants and providing access to datasets and submission

platforms. Online platforms such as Kaggle [1] or Codalab [54] often support

this phase, which offers tools for managing submissions, hosting leaderboards,

and facilitating participant interaction [14]. Effective communication strategies

are essential to attract diverse participants, including social media outreach, email

campaigns, and collaborations with academic and industry partners. Clear guidelines

and robust technical support can enhance participant engagement and ensure a
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smooth launch.

Evaluation and scoring are performed based on the predefined metrics.

Automated systems are commonly used to ensure fairness and consistency in

assessment. This phase may involve multiple rounds of evaluation, where preliminary

results are provided to participants for feedback and iteration. Ensuring transparency

in the evaluation process is key to maintaining participant trust and competition

integrity. Participants typically divide the provided training set into two subsets: 80%

for training their models and 20% for validating their models before making final

submissions.

Finally, the results dissemination phase involves announcing winners,

publishing results, and often organizing workshops or conferences to discuss findings

and future directions [47]. This phase is crucial for showcasing the achievements of

participants, providing recognition, and fostering a community of practice. Detailed

reports and publications can offer valuable insights into the challenge outcomes and

contribute to the broader knowledge base of the field. Post-challenge activities, such

as follow-up projects and collaborative initiatives, can further leverage the momentum

generated by the competition.

Dataset

Selecting datasets for a challenge involves considering several key characteristics to

ensure the competition’s effectiveness, fairness, and relevance. The most important

characteristics are detailed below [25, 26]:

1. Representativity: The dataset must represent the problem being addressed. This

means the data should cover various cases and situations the algorithms might

encounter in real-world applications.

2. Adequate Size: The dataset size should be sufficient to provide a meaningful

evaluation of the algorithm’s performance but not so large that it becomes an

obstacle due to the computational resource limitations of the participants.

3. Data Quality: The quality of the dataset is crucial. The data should be clean,
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well-annotated, and with minimal noise. Errors and inconsistencies should be

minimized to avoid biasing the evaluation results.

4. Accessibility: The dataset should be accessible to all participants. This includes

ensuring that the data is not proprietary or restricted and that all participants

can download and use the dataset without legal or technical issues.

5. Labeling and Annotation: The data should be correctly labeled and annotated if

the challenge involves Classification or labeling. The labels should be accurate

and faithfully reflect the information contained in the data.

6. Fairness: The dataset must be impartial and should not favor any particular

algorithm. This is achieved through careful design and pilot testing to identify

and correct potential biases.

7. Benchmarking: Using datasets that are industry standards or have been used

in previous challenges can help ensure the results are comparable and validated

against prior work.

These characteristics help ensure that the selected dataset allows for a fair

and meaningful evaluation of algorithm performance, facilitating the identification of

effective and robust solutions in the context of the challenge.

Challenges Summary

A challenge involves comparing the performance of algorithms under certain

constraints. The process can be detailed as follows:

• Evaluation of Multiple Participants: The challenge involves evaluating various

participants, which can be different algorithms, methods, or systems. This

ensures a broad comparison across multiple approaches to solve the given

problem.

• Performance Metrics Selection: The organizers select the performance metrics.

These metrics are crucial as they define how each participant’s performance will

be measured and compared. Common metrics include accuracy, precision, and
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recall, among others.

• Fixed Dataset Size: The challenge uses a fixed dataset size. This constraint

ensures that all participants work with the same data volume, promoting fairness

and consistency in the evaluation process.

• Limitation on Submissions: There is a limit on the number of submissions

each participant can make. This constraint encourages participants to carefully

optimize and test their solutions before submission, as they have a finite number

of attempts to achieve the best possible performance.

Traditional statistical methods for inferring the significance of a particular

performance metric are difficult to apply in the absence of multiple datasets or

submissions. This research shows how organizers can make effective comparisons

under these constraints.

Research Problem

In recent decades, collaborative challenges in science and technology have become

a popular platform for evaluating and improving research methodologies through

competitions. These competitions use scoring and ranking systems to compare

participants’ solutions. However, these systems face significant limitations, especially

in tasks such as comparing the performance of Classification algorithms.

The main challenge lies in the results’ validity and Statistical Significance. In

many competitions, as described in the case of evaluating Classification algorithms,

fixed performance metrics, a constant dataset size, and a limited number of

submissions per participant are used. These constraints make it difficult to apply

classical statistics to infer the significance of performance metrics. Traditionally,

the selection of the winner is based solely on the score ranking, without considering

the possibility that performance differences may result from random variability rather

than genuine methodological differences.

Furthermore, the absence of multiple datasets or numerous submissions
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prevents effective and rigorous multiple comparisons, which can result in a

misinterpretation of one method’s superiority over another. This situation poses a

critical problem: the lack of robust and accessible statistical tools that allow precise

and fair performance evaluation in these competitions.

Objectives

General Objective

To investigate and implement an evaluation scheme based on robust statistical

methods for learning algorithms in the context of challenges, providing organizers

and researchers with concrete and validated tools for more precise and well-founded

decision-making.

Specific Objectives

1. Thoroughly review the different elements used in evaluating learning

algorithms, including performance metrics, statistical methods used to infer

significance, and test configurations. This review will focus on identifying

the most common practices and their limitations to establish a theoretical

framework that supports the design of new evaluation schemes.

2. Examine in detail the characteristics and criteria used by the main Machine

Learning competitions, defining as main those with a high impact on the

scientific community or pioneers in applying new evaluation methodologies.

This objective will include an analysis of result validation processes, the

transparency and fairness of evaluations, and the methodologies used for data

handling and distribution.

3. Design evaluation schemes for learning algorithms that integrate advanced

statistical tools based on the deficiencies identified in the previous objectives.

This design will include prototype schemes evaluated through simulations or

collaboration with existing competition organizers to validate their effectiveness
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and practicality. Clear guidelines for their implementation in different

competition contexts will also be developed.

Research Hypotheses and Questions

Hypotheses

• Performance Metrics Hypothesis: The use of advanced statistical methods,

such as Bootstrapping, improves the reliability of performance evaluations in

machine learning competitions compared to traditional methods.

• Fairness and Robustness Hypothesis: Competitions leveraging resampling

techniques and robust evaluation frameworks provide fairer and more accurate

participant rankings than those using basic metrics alone.

• Applicability Hypothesis: Statistical tools and methodologies designed for

Classification tasks can be effectively adapted to other competition types, such

as regression or clustering, ensuring robust evaluation across domains.

Research Questions

• Evaluation Framework Question: How can robust statistical methods enhance

the evaluation of learning algorithms in competitive environments?

• Method Comparison Question: What are the trade-offs between traditional

statistical evaluation methods and newer approaches like Bootstrapping and

permutation tests in the context of Algorithmic Competitions?

• Impact of Constraints Question: How do constraints such as fixed dataset sizes

and limited submissions impact the reliability of performance evaluations in

competitive scenarios?

• Generalization Question: Can the proposed statistical methods reliably predict

the performance of algorithms in unseen datasets or real-world applications?
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Summary of the Work and Main Findings

This thesis addresses the challenges present in Algorithmic Competitions, proposing

novel methodologies and tools for accurately comparing algorithms under competitive

conditions. Through an exhaustive review of current evaluation methods, this work

identifies limitations in traditional approaches when applied to competition settings.

The methods proposed in this research consider the unique dynamics of competitive

scenarios, allowing for fair and robust algorithm comparisons.

The results obtained in this thesis highlight the advantages of the proposed

methodologies, demonstrating significant improvements in the accuracy and

adaptability of algorithm performance evaluation in competitions. These findings

contribute to developing a more solid framework for competition evaluation, with

positive implications for future research and the design of competitions in data science

and machine learning.

Outline of the Thesis

This thesis is structured into the following chapters:

• Chapter 1: Related Work

This chapter presents a thorough review of the literature on Algorithmic

Competitions and machine learning, focusing on statistical methods, evaluation

metrics, and frameworks tailored to competition scenarios. Key limitations

in traditional approaches are identified, laying the groundwork for the

contributions made in this thesis.

• Chapter 2: Theory Framework

This chapter establishes the theoretical basis for this research, covering machine

learning fundamentals, supervised learning approaches, and critical statistical

techniques such as resampling and Bootstrapping. These methods provide the

foundation for comparing algorithm performance in competitive and empirical

research settings.

10



• Chapter 3: Implementation of the Proposed Evaluation Framework

In this chapter, the implementation details of the proposed evaluation

framework are outlined, with a focus on statistical methods such as

Bootstrapping, hypothesis testing, and multiple comparisons. The chapter

emphasizes how these techniques are applied to ensure fair and robust algorithm

evaluation in competitive challenges.

• Chapter 4: Performance Comparison in Challenge Schemes

This chapter explores the methodologies for comparing algorithm performance

within challenge settings. It addresses challenges such as limited datasets,

competition-specific constraints, and performance variability. A detailed

analysis of statistical testing and inference methods is provided, highlighting

their role in generating reliable results.

• Chapter 5: Comparison of Competitions

This chapter compares various Algorithmic Competitions, examining their

structures, objectives, and outcomes. It highlights the differences in evaluation

frameworks across fields and their impact on fostering innovation and

collaboration. Suggestions for improving competition design are also provided,

based on observed patterns and results.
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1 Related Work

Chapter 1 provides a comprehensive review of the literature relevant to the thesis

topic. In the rapidly evolving field of machine learning and Algorithmic Competitions,

various methods have been proposed to assess the performance and significance

of models in different settings. This chapter aims to synthesize key contributions

in the literature, particularly focusing on methods for evaluating Classification

algorithms, statistical tests used for comparison, and approaches specifically designed

for competition scenarios. By understanding these foundational works, we can better

position the tools and methodologies introduced in the subsequent chapters.

1.1 Introduction

The Thesis aim is to introduce tools that facilitate the comparison of results among

different competitors. The existing literature addresses the issue of comparing

Classification algorithms; however, these primarily address aspects other than the

competition framework. This literature review groups the summarized articles

into three primary themes: statistical tests and methods, evaluation metrics and

frameworks, and specific approaches for competition scenarios. Each theme

addresses distinct aspects of algorithm comparison and provides insights into different

methodologies and their applications.

1.2 Statistical Tests and Methods

The primary goal of statistical tests is to assess whether one algorithm significantly

outperforms another using statistical tests; in this section, we mainly focus on tests to

compare Classification algorithms.

Dietterich [21] reviews various statistical tests to determine algorithm

performance differences. The paper discusses five closely related statistical tests for

assessing whether one learning algorithm outperforms another in specific learning
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tasks. These tests include the Resampled Paired t-Test, the K-Fold Cross-Validated

t-Test, and the 5×2 Cross-Validated Paired t-Test. However, these tests require access

to the underlying algorithm because they repeatedly split the dataset for training and

prediction (depending on the test) to assess algorithm variability. In a competition

scenario, there is only access to the predictions, not the algorithms. This limitation

makes it challenging to apply these tests directly in competitive environments where

only prediction results are available.

The paired t-test is a simple method that compares the means of two related

groups to determine if there is a statistically significant difference between them.

However, it assumes normal distribution and equal variances, which may not always

hold in practice. The cross-validated t-test, on the other hand, is an extension that uses

Cross-Validation to reduce the variance of the test, making it more robust to violations

of these assumptions. McNemar’s test is a non-parametric method used on paired

nominal data, focusing on the differences between matched pairs, thus providing a

more flexible approach for binary Classification problems.

Despite their strengths, these tests are limited by the need for access to the

internal mechanics of the algorithms. Access to the algorithm is necessary for

conducting these tests because the algorithms need to be run on various training

and test data subsets to assess performance variability accurately. This helps capture

the variability in error rates across different data samples, which is essential for valid

statistical comparisons. In competitive scenarios, where only prediction results are

available, alternative approaches are needed, as the absence of algorithm access

hinders the application of these statistical tests effectively. Therefore, while Dietterich’s

work provides a solid foundation for algorithm comparison, it underscores the

necessity for developing methods that can operate effectively under the constraints

of competition frameworks.

Demšar [20] focuses on the statistical comparisons of classifiers across multiple

datasets, which is unusual in challenge settings. The scenario involves just one dataset.

Demšar presents several non-parametric methods and guidelines for conducting a

proper analysis when comparing sets of classifiers. The study extends the discussion
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by introducing non-parametric methods for comparing classifiers across multiple

datasets. Techniques such as the Friedman and Nemenyi post-hoc tests are highlighted

for their robustness and ability to handle multiple comparisons without relying on

parametric assumptions. These methods provide a more flexible framework for

comparing classifier performance in varied scenarios.

The Friedman test is a non-parametric alternative to the repeated measures

ANOVA. It ranks the algorithms for each dataset and then evaluates if there is

a significant difference in the ranks. The Nemenyi post-hoc test, applied after

a significant Friedman test, identifies which classifiers differ significantly. These

methods are particularly useful in machine learning contexts where the normality

assumptions of parametric tests are often violated.

Demšar’s work also includes practical guidelines for applying these tests,

emphasizing the importance of understanding the underlying assumptions and

potential pitfalls. For instance, the paper discusses the issue of multiple comparisons

and the increased risk of Type I errors, proposing adjustments to control the

family-wise error rate. The comprehensive nature of this study makes it a valuable

resource for researchers looking to perform rigorous and reliable comparisons of

machine learning algorithms across diverse datasets.

García et al. [30] address a problem similar to Demšar’s but focus on

pairwise comparisons, specifically statistical procedures for comparing c×c classifiers.

While their approach also involves scenarios with multiple datasets using the same

classifiers, they emphasize pairwise comparison procedures in such contexts. The

authors propose using the Wilcoxon signed-rank test and other non-parametric

tests to compare classifiers, arguing that these methods offer greater reliability and

interpretability when dealing with multiple datasets and classifiers.

The Wilcoxon signed-rank test [38] is a non-parametric test that compares two

related samples, matched samples, or repeated measurements on a single sample to

assess whether their population mean ranks differ. It is used as an alternative to the

paired t-test when the data cannot be assumed to be normally distributed. Garcia et
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al. [30] advocate for its use due to its robustness and simplicity.

Garcia et al. also discuss the practical application of these tests, including

considerations for effect size and statistical power. They emphasize the need for careful

experimental design to ensure meaningful and generalizable results. For example,

they recommend using multiple datasets to capture the variability in algorithm

performance and to avoid overfitting to specific data characteristics. This approach

provides a more comprehensive assessment of classifier performance and helps

identify the most robust algorithms across different contexts.

Overall, Garcia et al.’s work provides a detailed and practical guide for

researchers looking to perform pairwise comparisons of classifiers, highlighting the

advantages and limitations of various non-parametric methods.

1.3 Evaluation Metrics and Frameworks

Lavesson and Davidsson [46] expand on evaluating learning algorithms and classifiers

by highlighting the importance of evaluation metrics in understanding model

performance. They emphasize the necessity of using a variety of metrics to capture

different aspects of performance, especially in prediction-only frameworks. This

is crucial for ensuring that the evaluation is comprehensive and reflects the true

capabilities of the models. The authors discuss metrics such as accuracy, precision,

recall, F-measure, and area under the ROC curve (AUC), advocating for a multi-metric

evaluation approach to better capture model performance nuances.

While widely used, accuracy often provides an incomplete picture, especially

in imbalanced datasets where it might be misleading. Precision and recall provide

more insight by measuring the relevance of the predictions. Precision indicates the

number of true positive results divided by all positive results, while recall measures the

number of true positive results divided by the number of positives that should have

been retrieved.

The F-measure, the harmonic mean of precision and recall, offers a single

metric that balances both concerns. The area under the ROC curve (AUC) is
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another important metric providing an aggregate performance measure across all

Classification thresholds. It plots the true positive rate against the false positive rate,

offering a comprehensive view of a model’s performance.

Lavesson and Davidsson also discuss the importance of context when

selecting evaluation metrics. Different applications may prioritize different aspects

of performance, and a single metric may not capture all relevant dimensions.

For example, recall (sensitivity) might be more critical than precision in medical

diagnostics, as missing a positive case could have serious consequences. Conversely,

precision might be more important in spam detection to avoid false positives.

The authors argue for a holistic approach to model evaluation, using a

suite of metrics to provide a more nuanced and complete understanding of model

performance. This approach can help ensure that models are evaluated fairly and

thoroughly, particularly in prediction-only frameworks where access to the underlying

algorithms is restricted.

Olson et al. [53] provide an overview of benchmarking in machine learning,

emphasizing the importance of proper experimental design and statistical analysis.

The authors propose a framework for fair algorithm comparison but assume access

to the algorithms rather than just their predictions. This study highlights the need

for proper experimental design and statistical analysis in benchmarking machine

learning algorithms. The proposed framework includes recommendations on dataset

selection, Cross-Validation strategies, and statistical tests to ensure fair and reliable

comparisons. The authors stress the importance of transparency and reproducibility

in benchmarking studies to foster trust and validity in the results.

The paper discusses the importance of selecting representative datasets that

cover a wide range of problem domains. This helps ensure the benchmarking results

are generalizable and not overly specific to a particular data type. Cross-Validation

strategies, such as k-fold Cross-Validation, are recommended to provide a robust

estimate of model performance. This approach divides the data into k subsets and

iteratively uses one subset for testing while training on the remaining k −1 subsets.
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Olson et al. also emphasize the need for rigorous statistical tests to compare

the performance of different algorithms. They recommend using methods such as the

paired t-test and Wilcoxon signed-rank test to assess whether observed differences in

performance are statistically significant. These tests help ensure that the conclusions

drawn from benchmarking studies are robust and not due to random variation.

Transparency and reproducibility are critical themes throughout the paper. The

authors argue that all aspects of the benchmarking process, from dataset selection to

evaluation metrics, should be documented and made publicly available. This allows

other researchers to replicate the studies and verify the results, which is crucial for

building trust in the findings.

The proposed framework by Olson et al. provides a comprehensive and

systematic approach to benchmarking machine learning algorithms. By following

these guidelines, researchers can ensure that their comparisons are fair, reliable, and

transparent, advancing the field of machine learning.

Raschka [58] delves into model evaluation, model selection, and algorithm

selection in machine learning, providing insights into various evaluation metrics

and resampling methods. This comprehensive study enhances the understanding of

algorithm performance evaluation. Raschka covers many evaluation techniques,

including k-fold Cross-Validation, bootstrap resampling, and leave-one-out

Cross-Validation. The author also discusses the trade-offs between different evaluation

methods and the impact of data distribution on model performance. This extensive

review is a valuable resource for researchers seeking to understand the intricacies of

model evaluation and selection.

K-fold Cross-Validation provides a robust estimate of model performance by

averaging the results across all folds. On the other hand, Bootstrap resampling involves

repeatedly sampling with replacement from the original dataset to create multiple

training sets. This method allows for the estimation of the variability of model

performance and is particularly useful for small datasets.

Leave-one-out Cross-Validation (LOOCV) is the extreme form of k-fold
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Cross-Validation where k equals the number of data points in the dataset. This method

is computationally intensive but provides an unbiased estimate of model performance.

Raschka discusses the trade-offs between these methods, highlighting the balance

between computational cost and the accuracy of performance estimates.

The book also covers various evaluation metrics, including accuracy, precision,

recall, F-measure, and AUC. Raschka emphasizes the importance of selecting

appropriate metrics based on the specific application and the nature of the data. For

instance, in imbalanced datasets, accuracy might be less informative than precision

and recall.

Raschka’s comprehensive coverage of model evaluation techniques provides a

valuable reference for researchers and practitioners in machine learning. The detailed

discussion of resampling methods and evaluation metrics helps readers understand

the strengths and limitations of different approaches, ultimately aiding in selecting the

most appropriate methods for their specific use cases.

1.4 Approaches for Competition Scenarios

Wainer [66] compares machine learning algorithms using a rank-based method, which

can be helpful in competitions where only the predictions are available. However, this

approach also requires multiple datasets and does not fully address the competitive

nature of single-dataset competitions. This study proposes a rank-based method for

comparing algorithms suitable for scenarios with multiple datasets. The rank-based

approach involves ranking the performance of each algorithm on individual datasets

and then aggregating these ranks to determine overall performance. This method is

beneficial in competitions where direct access to algorithms is restricted, as it relies

solely on prediction results.

The rank-based method proposed by Wainer involves assigning ranks to the

algorithms based on their performance on each dataset. The algorithm with the best

performance on a dataset receives the highest rank, and the ranks are aggregated

across all datasets to determine the overall ranking. This simple and intuitive approach
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makes it easy to understand and implement.

However, Wainer acknowledges the limitations of this method, particularly in

scenarios with a single dataset. The method cannot leverage the variability across

multiple datasets for a robust comparison. Additionally, the rank-based method does

not account for the magnitude of differences in performance; it only considers the

relative ranking.

To address these limitations, Wainer suggests complementing the rank-based

method with statistical tests that assess the significance of performance differences.

For example, the Wilcoxon signed-rank test can compare the ranks of two algorithms

across multiple datasets. This combination provides a more comprehensive evaluation

framework that balances simplicity and statistical rigor.

Wainer’s work highlights the importance of developing methods tailored to the

constraints of competition scenarios. Focusing on rank-based methods and their

limitations, this study provides valuable insights for researchers and practitioners

designing fair and effective competition frameworks.

Lacoste et al. [45] introduce a Bayesian approach for comparing machine

learning algorithms on single and multiple datasets. This method evaluates

performance differences probabilistically, explicitly modeling uncertainty and

variability across datasets. Unlike frequentist methods, which rely on fixed hypothesis

tests and binary outcomes, Bayesian methods provide a more flexible and interpretable

framework. The authors emphasize that their framework requires access to the

algorithms, not merely their predictions, as it involves modeling the algorithms’

internal behavior and decision-making processes. By treating algorithm performance

as random variables and using Bayesian inference, this approach offers a robust way to

incorporate prior knowledge and quantify uncertainty in performance comparisons.

The Bayesian framework proposed by Lacoste et al. models the performance of

each algorithm as a probability distribution, reflecting the uncertainty and variability

inherent in machine learning experiments. The framework can incorporate prior

information into the analysis using prior distributions based on previous knowledge or
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assumptions. Bayesian inference then updates these priors with the observed data to

produce posterior distributions, which provide a probabilistic algorithm performance

assessment.

One key advantage of this approach is its ability to quantify uncertainty

in performance estimates. Traditional methods often provide point estimates of

performance metrics, which do not capture the variability and uncertainty in the data.

In contrast, the Bayesian approach produces posterior distributions that reflect the

range of possible performance outcomes and their associated probabilities, a process

that benefits significantly from direct access to the algorithms’ operations.

Lacoste et al. also discuss the practical implementation of their framework,

including the selection of appropriate prior distributions and the computational

challenges associated with Bayesian inference. They provide guidelines for choosing

priors based on the specific context, available knowledge, and strategies for efficient

computation using techniques such as Markov Chain Monte Carlo (MCMC) methods.

The Bayesian approach presented by Lacoste et al. offers a powerful and

flexible framework for comparing machine learning algorithms. By incorporating

prior knowledge and quantifying uncertainty, this method provides a more nuanced

and informative assessment of algorithm performance, particularly in scenarios with

limited data or high variability. However, this nuanced analysis relies heavily on direct

access to the algorithms, as it is the algorithms’ internal processes, not just their

outputs, that are integral to this probabilistic framework.

1.5 Summary

The literature review on the comparison of Classification algorithms reveals a

broad spectrum of methodologies and frameworks tailored to different aspects of

performance evaluation. The studies reviewed can be categorized into three main

themes: statistical tests and methods, evaluation metrics and frameworks, and specific

approaches for competition scenarios.

Statistical tests, as explored by Dietterich [21], Demšar [20], and Garcia et al.
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[30], provide robust tools for assessing algorithm performance differences. These

include parametric tests like the paired t-test and non-parametric methods such as

the Wilcoxon signed-rank test and the Friedman test, which are particularly useful in

dealing with the diverse nature of machine learning data. However, these tests often

assume access to the algorithms, which may not be available in competitive settings

where only prediction outputs are provided.

Evaluation metrics and frameworks, as discussed by Lavesson and Davidsson

[46], Olson et al. [53], and Raschka [58], emphasize the importance of using a variety

of performance metrics and designing comprehensive benchmarking frameworks.

Metrics like accuracy, precision, recall, F-measure, and AUC are crucial for capturing

different performance dimensions, especially in prediction-only frameworks. Proper

experimental design, including Cross-Validation and Resampling Techniques, ensures

fair and reliable comparisons.

Wainer [66] and Lacoste et al. [45] highlight specific approaches for competition

scenarios, focusing on methods that can operate under the constraints of competitive

environments where only predictions are accessible. Rank-based methods and

Bayesian approaches offer valuable insights for fair algorithm comparison without

requiring access to the underlying algorithms. These methods provide flexible

and robust frameworks for evaluating performance differences, accommodating the

uncertainty and variability inherent in machine learning experiments.

Overall, while the existing literature provides extensive tools and methodologies

for comparing Classification algorithms, there remains a significant gap in addressing

the unique challenges of competition frameworks. Future research should aim

to develop methods that effectively leverage prediction outputs to ensure fair

and accurate comparisons in competitive settings, enhancing the reliability and

applicability of algorithm evaluations in practical applications.

In the referenced works by Dietterich (1998) [21], Demšar (2006) [20], García

et al. (2008) [30], and Wainer (2022) [66], access to algorithms rather than just

predictions is necessary for statistical tests comparing machine learning models due
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to several critical reasons:

1. Understanding Algorithm Behavior: Dietterich (1998) emphasizes that

statistical tests for comparing learning algorithms, such as Cross-Validation, require

examining the variance caused by the algorithms’ training process. This means that to

conduct proper statistical analysis, it’s crucial to understand how algorithms learn from

data across different runs, which is only possible by having access to the algorithms

themselves, not just their outputs. For instance, in 5x2 Cross-Validation tests, the

variation between folds is influenced by the learning algorithm’s structure, which

cannot be assessed merely by the predictions.

2. Resampling and Variability: García et al. (2008) highlight that

non-parametric statistical tests like the Friedman and Wilcoxon tests rely on measuring

differences in the rankings of algorithms across multiple datasets. This comparison

of algorithms requires access to both the internal workings and multiple iterations

of the algorithms on different datasets to assess performance variability. Without

the algorithm, key elements like random initialization or optimization methods that

impact model performance cannot be evaluated.

3. Post-hoc Tests: Demšar (2006) discusses the importance of post-hoc

tests (like the Nemenyi test) that allow for comparisons across multiple classifiers.

These tests rely on performance metrics produced as part of the algorithmic process,

meaning simply analyzing predictions without understanding the source of those

predictions (the algorithm) undermines the validity of these comparisons.

4. Bayesian Insights: Wainer (2022) introduces the Bayesian Bradley-Terry

(BBT) model, which requires access to the algorithm’s internal processes to evaluate

not just the ranking of algorithms but also the probability that one algorithm

is better than another. This probabilistic approach allows for defining practical

equivalence (ROPE) between algorithms, an assessment that cannot be determined

with predictions alone. The BBT model also emphasizes the importance of

understanding the internal variability of the algorithms across datasets, something that

can only be achieved by accessing the algorithms themselves.

23



In summary, statistical comparisons depend on understanding the variability

and nuances of algorithm behavior across different conditions, which requires full

access to the algorithms and not just their final outputs.
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2 Theory Framework

Chapter 2 provides a comprehensive exploration of the theoretical foundations

supporting this research. It introduces essential concepts in machine learning,

including supervised learning and key resampling techniques, such as Bootstrapping,

which play a critical role in evaluating model performance. By examining

these methodologies, the chapter establishes the groundwork for the experimental

analyses and performance comparisons conducted in later sections, ensuring a clear

understanding of the tools and approaches central to this study.

2.1 Introduction

This chapter establishes the theoretical framework underlying the methodologies

employed in this research, with a particular focus on machine learning and statistical

evaluation techniques. By exploring the fundamental concepts of supervised learning,

resampling methods, and Bootstrapping, this chapter provides the conceptual tools

required for assessing algorithm performance in competitive and research contexts.

The discussion begins with an overview of machine learning, emphasizing the

differences between supervised, unsupervised, and reinforcement learning. A deeper

examination of supervised learning techniques, such as Classification and regression,

is included to contextualize their relevance to real-world applications. This is followed

by an exploration of resampling techniques, which are critical for validating machine

learning models, ensuring their robustness, and facilitating reliable performance

comparisons.

Special attention is given to the bootstrap method, a powerful non-parametric

approach for evaluating performance metrics and constructing Confidence Intervals.

This chapter also highlights the role of permutation tests and their application

in feature importance analysis and statistical significance testing, underscoring

their utility in addressing challenges posed by high-dimensional data and complex
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distributions.

By integrating these concepts, this chapter lays the groundwork for the

experimental methodologies and evaluations conducted in subsequent chapters,

ensuring a comprehensive understanding of the tools and techniques that underpin

this research.

2.2 Machine Learning

Machine Learning (ML) is a subset of artificial intelligence that focuses on developing

algorithms that enable computers to learn from and make data-based decisions.

Three main machine learning types are supervised, unsupervised, and reinforcement

learning [49].

Supervised Learning: In supervised learning, the algorithm is trained on a

labeled dataset, which means that each training example is paired with an output label.

The objective is to learn a mapping from inputs to outputs that can be used to predict

the labels of unseen data. This type of learning is commonly used in applications such

as image recognition, speech recognition, and predictive analytics [12].

Unsupervised Learning: Unsupervised learning involves training algorithms

on datasets that do not have labeled responses. The goal is to identify patterns or

structures within the data. Techniques such as clustering and association are used

in unsupervised learning to find hidden patterns or intrinsic structures in the data.

Applications include market basket analysis, customer segmentation, and anomaly

detection [49].

Reinforcement Learning: Reinforcement learning is a type of learning where

an agent learns to make decisions by taking actions in an environment to maximize

cumulative reward. It differs from supervised learning in that the correct input/output

pairs are never presented, and sub-optimal actions are not explicitly corrected.

Instead, the agent learns from the consequences of its actions, adjusting its strategy

to achieve better outcomes over time. Common applications include robotics, game

playing, and autonomous vehicles [35].
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2.3 Supervised Learning

Supervised learning is one of the most widely used types of machine learning. It

involves training a model on a labeled dataset, meaning the data includes both input

features and the corresponding correct output. The model learns to map inputs to

outputs to predict new, unseen data output. Supervised learning is divided into two

main categories: Classification and regression [29].

2.3.1 Classification

Classification is a type of supervised learning where the output variable is categorical.

A Classification algorithm aims to assign input data to one of a finite set of categories.

For example, an email can be classified as “spam” or “not spam” [12].

Mathematically, the Classification problem can be described as follows: Given

a training set {(x1, y1), (x2, y2), . . . , (xn , yn)} where xi represents the feature vector of the

i -th example and yi is the corresponding class label, the objective is to learn a function

f : X → Y where X is the input space and Y is the set of possible class labels.

One common algorithm for Classification is logistic regression, which models

the probability that a given input belongs to a certain class. The logistic function is

defined as:

P (Y = 1|X = x) = 1

1+e−(β0+β1x)
(2.1)

where P (Y = 1|X = x) is the probability that the output is 1 given the input x, and β0

and β1 are parameters to be learned [12].

Another widely used Classification algorithm is the Support Vector Machine

(SVM), which finds the hyperplane that best separates the classes in the feature space.

The decision boundary in an SVM is defined by:

w · x +b = 0 (2.2)

where w is the weight vector and b is the bias term. The SVM algorithm aims to
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maximize the margin between the two classes [65].

2.3.2 Regression

Regression is another type of supervised learning where the output variable is

continuous. A regression algorithm aims to predict the output value based on input

features. For example, predicting the price of a house based on its features such as

size, location, and number of rooms [12].

Mathematically, the regression problem can be described as follows: Given a

training set {(x1, y1), (x2, y2), . . . , (xn , yn)} where xi represents the feature vector of the

i -th example and yi is the corresponding continuous output, the objective is to learn a

function f : X →R where X is the input space and R is the set of real numbers.

One common algorithm for regression is linear regression, which models the

relationship between the input features and the output as a linear combination of the

features. The linear regression model is defined as:

y =β0 +β1x1 +β2x2 +·· ·+βp xp +ϵ (2.3)

where y is the output, β0,β1, . . . ,βp are the coefficients to be learned, x1, x2, . . . , xp are

the input features, and ϵ is the error term [29].

Another popular regression algorithm is the Decision Tree Regression, which

uses a tree-like model of decisions. The decision tree splits the data into subsets based

on the value of the input features, and the splits are chosen to minimize the error in

predicting the output [29].

2.4 Resampling Techniques

Machine learning models require robust validation techniques to ensure their

performance and generalizability. Resampling techniques, such as K-fold

Cross-Validation and Bootstrapping, play a crucial role in this process by providing

reliable estimates of model performance.
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2.4.1 Cross-Validation

Cross-Validation is a widely used resampling technique in which the data is partitioned

into subsets, and the model is trained and validated on different combinations of these

subsets. The most common forms of Cross-Validation are k-fold Cross-Validation and

leave-one-out Cross-Validation (LOOCV).

K-Fold Cross-Validation: In k-fold Cross-Validation, the data is divided into k

equally sized folds. The model is trained on k − 1 folds and tested on the remaining

fold. This process is repeated k times, with each fold used exactly once as the test set.

The performance metric is averaged over the k iterations to provide a robust estimate

of model performance [6, 37].

Leave-One-Out Cross-Validation: LOOCV is a case of k-fold Cross-Validation

where k equals the number of data points. This method is computationally intensive

but can be useful for small datasets. It involves training the model on all data points

except one and repeating this process for each, providing an almost unbiased estimate

of model performance [6].

2.4.2 Bootstrapping

Bootstrapping is a powerful statistical method that involves repeatedly sampling from

the data with replacement to create multiple training sets. This technique estimates the

distribution of a statistic (e.g., mean, variance) by sampling and is particularly useful

for assessing the stability and variance of machine learning models [24].

Bootstrapping can be used to estimate the Confidence Intervals of model

performance metrics, such as accuracy or AUC. By evaluating the model on multiple

bootstrap samples, practitioners can gain insights into the variability and reliability of

the model’s predictions [29].
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2.4.3 Permutation Tests

Permutation Tests, also known as randomization tests, are a non-parametric statistical

technique used to assess the significance of an observed relationship between

variables. This method is especially useful in scenarios where the assumptions

required for traditional parametric tests, such as normality or homoscedasticity, may

not hold. Instead of relying on these assumptions, permutation tests generate a null

distribution by randomly rearranging or permuting the labels of the data points. This

allows for the computation of a test statistic under the null hypothesis, which states no

association between the independent and dependent variables [33].

One of the key advantages of permutation tests is their flexibility and

applicability to various types of data. Since they do not depend on the underlying

distribution of the data, they can be applied to situations where traditional methods

might struggle. Permutation tests have been widely used in a variety of fields, including

biology, psychology, and, more recently, machine learning. In the latter, these tests are

often used to evaluate the statistical significance of model features, as they allow for

a more robust assessment of feature importance by circumventing the limitations of

parametric tests [34].

In machine learning, permutation tests are commonly employed to assess

the contribution of each feature to the model’s performance. The process involves

randomly shuffling the values of a given feature while leaving the other features

unchanged and then measuring how much the model’s accuracy or performance

metric declines as a result. If a feature is important, its randomization will lead to

a noticeable decrease in performance, indicating that the feature provides valuable

information to the model. By comparing the model’s performance on the original data

with that on the permuted data, researchers can quantify the significance of the feature

in relation to the overall prediction task [52].

Furthermore, permutation tests are especially useful when working with

models that involve a large number of features, such as in high-dimensional datasets.

In these cases, identifying which features contribute the most to the model’s predictive
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capability is crucial for improving model efficiency, interpretability, and generalization

to new data. Permutation tests offer an intuitive and computationally feasible

approach to achieve this, as they do not require retraining the model for each feature

assessment, unlike other feature importance techniques such as recursive feature

elimination [15].

In summary, permutation tests provide a powerful and flexible tool for assessing

the statistical significance of features in a machine-learning context. By comparing the

model’s performance on shuffled data with its performance on the original dataset, this

method offers valuable insights into the importance of individual features, even in the

presence of complex or non-standard data distributions. This makes permutation tests

an essential component in the toolkit for feature selection and model interpretation

[33].

2.4.4 Recent Advancements and Practical Considerations

Recent advancements in resampling techniques focus on improving computational

efficiency and adapting methods to complex data structures, such as time series and

hierarchical data. Techniques like stratified Cross-Validation and time-series split are

tailored for specific data types, ensuring more reliable performance estimates [10].

Practitioners must consider the computational cost when implementing

resampling techniques, especially with large datasets and complex models. Efficient

implementation and parallel computing can alleviate some of these challenges.

Additionally, understanding the assumptions and limitations of each resampling

method is crucial for accurate model evaluation [37].

2.5 Bootstrap

The concept of “Bootstrapping” originates from the idea of “pulling oneself up by

one’s bootstraps,” a phrase that seems to have been first coined in 1786 by Rudolph

Erich Raspe in his book The Singular Travels, Campaigns, and Adventures of Baron

Munchausen. Statistics refers to making inferences about a sampling distribution of
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statistics by resampling the sample itself with replacement [17, 24]. The accuracy of

inferences depends on how well the resampling distribution replicates the original

sampling distribution. This accuracy improves with larger original sample sizes,

assuming the central limit theorem holds.

This technique is advantageous when our sample is small or it is difficult to

obtain a representative sample from the population. Bootstrapping helps overcome

the limitations of traditional statistical methods by providing a way to estimate the

variability and uncertainty of statistics without making strong assumptions about the

population distribution. We can use the Bootstrapping method to obtain Confidence

Intervals for our statistics of interest by repeatedly resampling the sample data and

calculating the statistic of interest. The term resampling was initially used in 1935 by

R. A. Fisher in his famous randomization test and in 1937 and 1938 by E. J. G. Pitman,

but in these instances, the sampling was carried out without replacement.

The theory and applications of the bootstrap have exploded in recent

years, and the Monte Carlo approximation to the bootstrap has developed into

a well-established method for drawing statistical conclusions without making firm

parametric assumptions. Bootstrap refers to various methods now included under the

broad category of nonparametric statistics known as resampling methods. Brad Efron’s

publication in the Annals of Statistics was published in 1979, making it a crucial year for

the bootstrap [23, 24]. Efron developed the bootstrap resampling technique. His initial

objective was to extract the bootstrap’s features to understand better the jackknife (an

earlier resampling technique created by John Tukey). He built it as a straightforward

approximation to that technique. However, as a resampling method, the bootstrap

frequently performs better than the jackknife.

2.5.1 Applications of Bootstrapping in ML

Bootstrap methods have numerous applications in machine learning, some of which

are discussed below.

Bootstrap is widely used to assess the performance of predictive models.
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By generating multiple bootstrap samples, one can obtain a distribution of model

performance metrics such as accuracy, precision, and recall. This approach provides a

more robust evaluation compared to traditional train-test splits, as Hastie (2009) [37]

explains.

In feature selection, bootstrap methods help estimate the stability and

importance of features. By repeatedly sampling the dataset and evaluating feature

selection algorithms, one can determine which features consistently contribute to

model performance, as discussed by Friedman (2001) [29].

Bootstrap is a fundamental component of ensemble methods like bagging

and random forests. In bagging, multiple models are trained on different bootstrap

samples, and their predictions are aggregated to produce a final prediction. This

technique reduces variance and improves model robustness, as demonstrated by

Breiman (2001) [15].

2.5.2 Case Studies

A study by Breiman (2001) [15] demonstrated the effectiveness of bootstrap methods in

improving the accuracy and reliability of predictive models. The study used bootstrap

to construct ensemble models, which consistently outperformed single-model

approaches.

Research by Meinshausen (2010) [48] highlighted using Bootstrap to assess

the stability of feature selection. The findings indicated bootstrap methods provided

valuable insights into which features were reliably important across different data

samples.

Bootstrap has already been applied in NLP, particularly in the statistical

significance analysis of NLP systems. For instance, in the study conducted by Koehn

(2004) [42], bootstrap was used to estimate the Type I Error of the BLEU (bilingual

evaluation understudy) score in Machine Translation (MT). Similarly, the research by

Zhang (2004) [68] was employed to measure the Confidence Intervals for BLEU/NIST

scores. Additionally, in the field of Automatic Speech Recognition (ASR), researchers
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have used Bootstrap to estimate Confidence Intervals in performance evaluation, as

illustrated in the work of Bisani (2004) [11].

Although using Bootstrap in machine learning is not a novel technique, it

remains highly relevant. Bootstrap is a versatile and powerful method that enhances

various aspects of machine learning, from model evaluation to feature selection and

ensemble methods. Its ability to provide robust estimates and Confidence Intervals

makes it an indispensable tool in the data scientist’s toolkit. By resampling data and

creating multiple synthetic datasets, researchers can obtain more reliable estimates of

model metrics, reducing the impact of variance due to limited sample sizes.

In summary, Bootstrapping continues to be an essential technique in machine

learning. It contributes to the rigorous evaluation and validation of models, which is

crucial for advancing the state of the art. Future research and applications are likely to

uncover even more ways Bootstrapping can contribute to the advancement of machine

learning.

2.6 Summary

This chapter has provided an in-depth exploration of the key concepts and

methodologies central to evaluating Algorithmic Competitions and machine learning

performance. Beginning with an overview of machine learning paradigms, such as

supervised and unsupervised learning, the chapter outlined foundational principles

and their application contexts.

Key statistical methods for performance assessment, including

bootstrap-based inference and hypothesis testing, were examined. Resampling

techniques such as Cross-Validation and permutation tests were also discussed,

highlighting their utility in ensuring robust and reliable evaluation metrics. The

exploration emphasized the flexibility of these methods, particularly Bootstrapping,

in addressing challenges such as limited data availability and non-parametric

distributions.

The insights gained from this chapter establish the theoretical framework that
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supports subsequent experimental and practical analyses. This foundation ensures

a rigorous approach to evaluating algorithm performance in competitive contexts

and broader applications, aligning the methodology with best practices in modern

machine learning research.
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Chapter 3

Implementation of the Proposed

Evaluation Framework



3 Implementation of the Proposed Evaluation

Framework

3.1 Introduction

This chapter focuses on the proposed evaluation framework’s practical

implementation, highlighting its utility in assessing participants’ performance in

competitive contexts and its potential for broader applications. Building on the earlier

theoretical principles, the chapter illustrates how the framework operationalizes

statistical methods to ensure fair, reliable, and reproducible evaluations.

By leveraging techniques such as Bootstrapping, hypothesis testing, and

multiple comparisons, the framework provides a robust mechanism for quantifying

performance variability, identifying statistically significant differences, and drawing

reliable conclusions about participants’ rankings. These methodologies are applicable

to competitions and extend to other scenarios, such as evaluating algorithms in

experimental research or system benchmarking.

The chapter addresses practical questions, including how to transition from

theoretical design to implementation, which tools and methods are most effective

for handling diverse datasets, and how to ensure methodological consistency across

varied scenarios. The insights and results derived from this work contribute to

advancing fair and transparent evaluation practices, making it a valuable resource for

both researchers and challenge organizers.

3.2 Implementation

3.2.1 Bootstrap´s Mathematical Formulation

The fundamental idea behind Bootstrapping is simple yet elegant. Given an original

sample of size n, the bootstrap method involves generating a large number of
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resampled datasets (each of size n) by random sampling with replacement from the

original sample. Each resampled dataset, known as a bootstrap sample, is used to

calculate the statistic of interest. The collection of these bootstrap statistics forms an

empirical distribution, which can be used to make inferences about the population

parameter [18].

This concept can be formally expressed as follows: let X = {x1, x2, . . . , xn} be the

original sample of size n. The bootstrap procedure can be described as follows:

1. Generate B bootstrap samples, where each bootstrap sample X ∗
b = {x∗

1 , x∗
2 , . . . , x∗

n}

is obtained by sampling with replacement from X .

2. Compute the statistic of interest θ̂ for each bootstrap sample X ∗
b . Let θ̂∗b denote

the statistic computed from the b-th bootstrap sample.

3. Construct the empirical distribution of θ̂ using the bootstrap statistics

{θ̂∗1 , θ̂∗2 , . . . , θ̂∗B }.

In Algorithm 1 the process for obtaining B bootstrap samples to compute the

empirical distribution of the statistic T is presented.

The bootstrap procedure is structured systematically to implement this

methodology, as outlined in the pseudocode below (Algorithm 1). This algorithm

describes the step-by-step process of generating bootstrap samples, calculating the

statistics of interest, and constructing the empirical distribution. By detailing these

steps, the pseudocode provides a clear foundation for applying the bootstrap method

within the evaluation framework.

3.2.2 Pseudocode for Bootstrapping Algorithm

The process begins with the input of the original dataset, denoted as X, which consists

of n observations and the specification of the number of bootstrap samples, B . An

empty list T is initialized to store the statistics computed from each bootstrap sample.

For each iteration, a bootstrap sample X∗ is generated by sampling with replacement

from the original dataset X. The statistic of interest, denoted as t∗ (e.g., mean, median,
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Algorithm 1 Pseudocode for the Bootstrapping Algorithm: A resampling method
used to estimate the sampling distribution of a statistic by repeatedly sampling with
replacement from the original dataset.

Require: X = {x1, x2, . . . , xn} ▷Original data sample of size n
Require: B ▷Number of bootstrap samples

1: Initialize T = [] ▷ List to store bootstrap estimates
2: for i = 1 to B do
3: X∗ ← Sample with replacement from X ▷ Bootstrap sample
4: t∗ ← Compute statistic of interest from X∗

5: Append t∗ to T
6: end for
7: Compute the empirical distribution of T
8: Compute Confidence Intervals and standard errors from T if needed
9: return Empirical distribution of T

or standard deviation), is computed based on the values in X∗ and appended to

the list T. This iterative procedure ensures that each bootstrap sample captures the

variability inherent in the data, enabling robust statistical inference. The steps for

generating bootstrap samples and analyzing their resulting statistics are explained in

detail following the algorithm.

After generating all B bootstrap samples and computing the corresponding

statistics, the empirical distribution of the statistic can be analyzed. This distribution

allows for further statistical analyses, such as the calculation of Confidence Intervals

and standard errors, based on the variability of the bootstrap estimates.

From the sampling distribution, it is possible to make inferences about the

statistic of interest, which, in our case, is the performance measure. Specifically,

inferences can be made through Confidence Intervals and hypothesis tests. Below, we

detail how Confidence Intervals are constructed.

3.2.3 Confidence Intervals Using Bootstrap

Bootstrapping can also be used to construct Confidence Intervals for the statistic of

interest, as shown by Efron [24]. Several methods are available, each with unique

characteristics and suitability depending on the data and the underlying assumptions.

Below, we describe some of the most commonly used approaches for constructing
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bootstrap Confidence Intervals, highlighting their strengths and appropriate use cases.

Percentile Bootstrap Interval: This method involves generating multiple

bootstrap replicates, ordering the values of the statistic of interest, and using the

percentiles of the empirical distribution to define the bounds of the Confidence

Interval. For example, for a 95% Confidence Interval, the bounds would be taken

from the 2.5th and 97.5th percentiles of the bootstrap statistics distribution. This

approach is simple and widely used due to its ease of implementation. In general,

it is constructed by taking the (α/2) × 100th and (1 −α/2) × 100th percentiles of the

bootstrap distribution of the statistic. For a (1 −α)× 100% Confidence Interval, the

percentile interval is given by:

[θ̂(α/2), θ̂(1−α/2)]

where θ̂(α/2) and θ̂(1−α/2) are the (α/2)×100th and (1−α/2)×100th percentiles of the

bootstrap distribution, respectively [24].

Bootstrap Standard Error Interval: In this method, the standard error of the

statistic is estimated from the variability observed in the bootstrap replicates. Then,

assuming that the distribution of the statistic is approximately normal, a Confidence

Interval is constructed using the standard formula for normal-based Confidence

Intervals:

θ̂± zα/2 ·SEbootstrap,

where θ̂ is the estimator of the parameter and SEbootstrap is the standard error estimated

from the bootstrap samples.

Bias-Corrected and Accelerated (BCa) Bootstrap Interval: This is a more

advanced method that adjusts the Confidence Interval to correct bias and variability in

the estimator. The BCa method uses two key parameters: the bias and the acceleration,

which measure how far the bootstrap estimator is from being centered and the rate

of change of the standard error, respectively. This approach is more robust than the

simple percentile method, especially when the statistic of interest is biased or has a

highly skewed distribution.
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In the Proposed Evaluation Framework, the Percentile Bootstrap Interval is

employed for constructing Confidence Intervals. This method is chosen for its

simplicity, ease of implementation, and effectiveness in capturing the variability of

performance metrics across bootstrap samples. By leveraging the percentiles of

the empirical distribution, the framework ensures robust and interpretable interval

estimates for the evaluation of participant performance.

3.2.4 Hypothesis Testing Using Bootstrap

Bootstrap methods provide a robust and flexible framework for conducting hypothesis

tests without relying heavily on traditional parametric assumptions. Bootstrap

hypothesis testing can evaluate whether observed data supports or contradicts a

null hypothesis by leveraging the empirical distribution of a statistic obtained from

resampling as explained by Efron (1994) [24].

The process typically begins by defining the null hypothesis (H0) and the

alternative hypothesis (HA). For instance, in evaluating algorithm performance, H0

might assert that there is no difference in the performance metrics of two algorithms,

while HA suggests a significant difference.

Bootstrap hypothesis testing involves the following steps:

1. Generate Bootstrap Samples Under H0: Create bootstrap samples under the

assumption that H0 is true.

2. Compute the Test Statistic: For each bootstrap sample, compute the test statistic

(e.g., the difference in means or medians between groups).

3. Construct the Null Distribution: Build the empirical distribution of the test

statistic under H0 using the bootstrap samples.

4. Compare the Observed Statistic: Compare the observed test statistic from the

original dataset to the null distribution to calculate the p-value. This measures

the proportion of bootstrap samples where the test statistic is as extreme as or

more extreme than the observed value.
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5. Draw Conclusions: Based on the p-value and a predetermined significance level

(α), decide whether to reject or fail to reject H0.

This approach is particularly advantageous when the underlying distribution

of the data is unknown or does not meet the assumptions of classical parametric tests.

By relying on resampling, bootstrap hypothesis testing offers a data-driven method for

robust statistical inference.

3.2.5 Hypothesis Testing for Multiple Comparisons

When we talk about multiple testing, we mean checking several hypotheses

simultaneously. This happens often in research. In our case, it’s about comparing the

performance of different competitors in a challenge to see how they stack up against

each other. Considering the ranking generated based on the performance metric

chosen by the challenge organizers, our goal is to determine whether the first place

is better than the second, third, ..., up to the m-th place, given that the challenge has

m participants. If we denote θi (x) as the performance of the i -th place in the ranking,

then the multiple hypotheses would be H j
0 : θ1(x) ≤ θ j (x) versus H j

A : θ1(x) > θ j (x) for

j = 2,3, . . . ,m.

When multiple comparisons or hypothesis tests are performed on a dataset, the

probability of making Type I errors (falsely rejecting a true null hypothesis) increases,

as explained by Jafari (2019) [41]. This increase occurs because conducting more tests

raises the likelihood of finding statistically significant results by pure chance. If we

perform m independent tests, each with a significance level α, the probability of at

least one Type I Error is called the Familywise Error Rate (FWER) (FWER) and is given

by:

FWER = P (at least one Type I error) = 1− (1−α)m . (3.1)

Controlling the FWER involves adjusting the significance levels of individual tests to

ensure that the overall probability of making one or more Type I errors does not exceed

a specified threshold, typically 0.05.
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Several methods have been developed to address the issue of multiple

comparisons. Below, we discuss some of the most commonly used techniques [8, 61]

(Benjamini and Hochberg, 1995; Søgaard et al., 2014).

Bonferroni Correction

The Bonferroni correction is one of the simplest and most conservative methods. It

adjusts the significance level by dividing α by the number of comparisons m:

α′ = α

m
. (3.2)

While easy to implement, this method can be overly conservative, especially when the

number of comparisons is large, leading to a loss of statistical power [13, 22] (Dunn,

1961; Bonferroni, 1936).

Holm’s Procedure

Holm’s step-down procedure is a sequentially rejective method less conservative than

the Bonferroni correction. It involves sorting the p-values in ascending order and

comparing each to a progressively adjusted significance level:

αi = α

m − i +1
, (3.3)

where i is the rank of the p-value. This method controls the FWER and is more powerful

than the Bonferroni correction [39] (Holm, 1979).

Benjamini-Hochberg procedure

The False Discovery Rate (FDR) approach, also known as the Benjamini-Hochberg

(BH) procedure introduced by Benjamini and Hochberg, focuses on controlling

the expected proportion of Type I errors among the rejected hypotheses. The

Benjamini-Hochberg procedure adjusts the p-values as follows:

p(i ) ≤ i

m
α, (3.4)
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where p(i ) is the ith ordered p-value. This method is beneficial in large-scale testing

scenarios, such as genomic studies, where controlling the FDR is more appropriate

than controlling the FWER [8] (Benjamini and Hochberg, 1995).

3.3 Performance Comparison Using Bootstrap

Comparing the performance of algorithms is a complex and ongoing problem.

Performance can be defined in many ways, such as accuracy, speed, etc. Numerous

performance measures have been presented in the literature, as discussed by Labatut

(2012) [44], Sokolova (2009) [62], and Hastie (2009) [37]; consult appendix A.1.

The main objective of this work is to make inferences on the performance

parameter θ of the algorithms developed by the teams participating in the competition.

This inference is made on a single dataset of size n, with minimal submissions. The

inference concerns the parameter’s value (performance) in the population from which

the dataset is considered to be randomly drawn.

The traditional method employed in academic competitions involves punctual

estimation, which means calculating the performance of each competing system using

the test dataset for each metric. The competitions specify which metrics are used

and which determine the competitors’ rankings. The result is a table similar to

the one presented in Table 3.1, corresponding to the Close Track of the VaxxStance

2021 challenge [2], which focused on determining the stance expressed on the highly

controversial topic of the anti-vaxxers movement in two languages: Basque and

Spanish.

The primary objective of VaxxStance 2021 was to identify whether a given tweet

conveyed an against, favor, or neutral (none) stance regarding this predefined topic.1

The competition introduced specific participation categories for Basque and Spanish,

referred to as the Close Track. Within this track, participant systems were presented

with two evaluation choices: Textual, enabling them to work exclusively with the

provided tweets in the target language during development, and Contextual, which

1Open track and Zero-shot track were not considered because of too limited participation.
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permitted the utilization of supplementary Twitter-related data, including user-based

features, friend connections, and retweet information.

The Macro-averaged F1 score was utilized for these subtasks and exclusively

applied to the favor and against classes, despite the presence of the none class in the

dataset. Table 3.1 provides an example of the results obtained using this methodology,

highlighting the differences in performance across participant systems.

Table 3.1: Macro-averaged F1 Scores for favor and against in the VaxxStance Close
Track (2021) - Contextual Evaluation.

System Basque
WordUp.01 0.5734
WordUp.02 0.5465
MultiAztertest.01 0.5024
SQYQP.01 0.4256
MultiAztertest.02 0.3428

The inference on the statistical parameter θ often involves statistical hypothesis

testing and Confidence Interval estimation. These statistical methods help determine

whether observed differences are statistically significant or could have occurred

randomly. This reasoning is now applied to performance parameters in academic

competition schemes. Techniques such as Cross-Validation, bootstrap methods, and

permutation tests are commonly used to assess the robustness and reliability of

performance estimates, as explained by Efron (1994) [24] and Goodfellow (2016) [35].

However, beyond evaluating performance solely on the test dataset, we aim to infer the

potential performance of the algorithms on the population from which the dataset was

drawn. This allows us to make broader generalizations about the algorithm’s behavior

in real-world scenarios, ensuring that the observed performance is not merely a result

of specific characteristics of the test data but reflective of its likely performance in

unseen data from the same population.

To make inferences about the performance parameter θ through statistical

hypothesis testing and Confidence Interval estimation, it is vital to have the sampling

distribution of the parameter. Typically, this distribution is obtained by repeatedly

sampling from the population and calculating the parameter of interest for each
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sample, which provides a distribution of the sample statistics. This approach

allows a more accurate estimation of the variability and uncertainty around θ.

However, in academic competitions, we only have access to a single sample—the

testing dataset—making it impossible to generate a traditional sampling distribution.

Consequently, we employ Bootstrapping to construct B bootstrap samples, each

formed by resampling with replacement from the original dataset. This allows us to

approximate the sampling distribution of θ using the bootstrap sample distribution.

This method compensates for the lack of multiple independent samples, as discussed

by Nava-Muñoz (2023) [50] and Nava-Muñoz (2024) [51]. However, it is important to

note that the quality of the bootstrap estimates still depends on the original dataset’s

representativeness and size.

The procedure involves extracting B bootstrap samples (e.g., 10,000, with

replacement, each size n) from the dataset containing the n Gold Standard examples

and their corresponding predictions for each team. For each bootstrap sample S j , with

j = 1,2, . . . ,B , the performance metric θi (S j ) is calculated for each team i , resulting in

a sampling distribution of performance metrics. These distributions provide insights

into the variability and reliability of the performance metrics for each participant.

Figure 3.1 illustrates this paired bootstrap method applied to a hypothetical

binary Classification competition with two participants. The figure demonstrates how

the bootstrap samples are generated and how each sample’s performance metrics

are computed. Algorithm 1 complements this explanation by providing a detailed

step-by-step pseudocode of the implementation. This approach accounts for dataset

and prediction variability, ensuring a robust and reliable evaluation of participant

performances across multiple iterations.

We will consider the VaxxStance 2021 challenge for a practical understanding

of how the bootstrap method works. This challenge focuses on determining the

stance expressed on the highly controversial topic of the anti-vaxxers movement in two

languages: Basque and Spanish. The primary objective is identifying whether a given

tweet conveys an against, favor, or neutral (none) stance regarding this predefined

topic. The dataset for this competition provides labeled examples indicating the true
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Obs Ref X1 X2
1 0 0 1
2 1 0 1
...

...
...

...
n 0 1 0

Test dataset

θ1(x), θ2(x),
(
θ1(x)−θ2(x)

)

Obs Ref X1 X2
2 1 0 1
3 0 1 0
...

...
...

...
5 0 0 1

...

θ1(S2), θ2(S2),
(
θ1(S2)−θ2(S2)

)
...

Obs Ref X1 X2
2 1 0 1
n 0 1 0
...

...
...

...
1 0 0 1

θ1(SB ), θ2(SB ),
(
θ1(SB )−θ2(SB )

)

Obs Ref X1 X2
3 0 1 0
1 0 0 1
...

...
...

...
3 0 1 0

Bootstrap samples

θ1(S1), θ2(S1),
(
θ1(S1)−θ2(S1)

)

S2

S1

SB

Figure 3.1: Illustration of the Paired Bootstrap Sampling Scheme. This figure
depicts the process of generating bootstrap samples by resampling the dataset
with replacement, preserving the pairing of gold standard labels and predictions.
The scheme highlights how performance metrics are calculated for each sample to
construct empirical distributions for robust statistical analysis.

stance for each tweet, serving as the basis for applying the bootstrap methodology to

evaluate performance metrics across participants.

Table 3.2 presents an excerpt of the data used for evaluating the challenge.

It includes the Gold Standard labels, which represent the true stance, along

with predictions from various submissions made by participating teams. For

instance, WordUp.01 corresponds to the first submission from the WordUp team,

while WordUp.02 represents their second submission. The competition utilized

all submissions from each participating team, enabling a comprehensive system

performance analysis across multiple iterations. Each row corresponds to a test

example, showcasing the comparison between the ground truth and the predicted

labels for the different submissions under evaluation.

Table 3.3 demonstrates an example of a bootstrap sample generated from the

original dataset shown in Table 3.2. In this sample, rows are selected with replacement,

allowing some rows to appear multiple times while others may not appear at all. This
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example represents one of the B bootstrap samples that can be generated during the

evaluation process.

Table 3.2: Results for VaxxStance Close Track - Contextual (2021), showcasing
predictions from multiple teams compared against the gold standard labels.

Obs Gold Standard WordUp.01 ... SQYQP.01
1 favor favor ... favor
2 favor favor ... none
3 against none ... against
4 none none ... none
... ... ... ... ...
ntest none favor ... against

Table 3.3: Top 5 entries from a bootstrap sample from the VaxxStance Close track
results. The rows are sampled with replacements from the original dataset.

Obs Gold Standard WordUp.01 ... SQYQP.01
3 against none ... against
1 favor favor ... favor
2 favor favor ... none
ntest none favor ... against
3 against none ... against

For each of the B bootstrap samples generated in the form of Table 3.3,

the performance measure is calculated for every submission. These computations

result in a table similar to Table 3.4, where the performance metrics, such as the

Macro-averaged F1 Score for the classes favor and against, are presented for each

team and their corresponding submissions. This process produces a comprehensive

representation of the variability and reliability of the performance metrics across

all bootstrap samples, enabling robust statistical analysis and inference about the

participants’ results.

Table 3.4: Top 5 entries from the ‘Results for VaxxStance Close Track - Contextual
(2021)’ using Macro-averaged F1 Score for ‘favor’ and ‘against’.

Sample MultiAztertest.01 MultiAztertest.02 SQYQP.01 WordUp.01 WordUp.02
1 0.49025 0.308788 0.482413 0.617927 0.550909
2 0.524976 0.263587 0.473899 0.581218 0.622033
3 0.535814 0.366176 0.50666 0.593348 0.592989
4 0.508311 0.313008 0.508253 0.565969 0.53524
5 0.552128 0.353765 0.431905 0.59568 0.557417
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Figure 3.2: Bootstrap sampling distributions for performance metrics obtained from
the VaxxStance 2021 challenge. The lines represent the empirical distributions, while
the points indicate the performance of each system, providing a comprehensive view
of variability and central tendency.

Finally, the sampling distribution of the performance measure is obtained,

providing insights into the evaluated metric’s variability and stability. This distribution,

illustrated in Figure 3.2, is the foundation for constructing Confidence Intervals and

conducting hypothesis tests, enabling a thorough and statistically sound comparison

of participants’ results.

3.3.1 Comparison through Independents Samples

We can compare the estimated bootstrap Confidence Intervals either by analyzing their

numerical values or through visual inspection using graphs, as indicated in Section

3.3. Graphical representations serve as intuitive tools that facilitate comparison and

support decision-making.

We follow a standard bootstrap procedure to compute these Confidence

Intervals, as explained in Sections 3.2.2 and 3.2.3. First, we resample the original

dataset with replacement to generate multiple bootstrap samples. For each sample,

the metric of interest is calculated, resulting in a distribution of the metric values. The
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Confidence Interval is then derived using the Percentile Bootstrap Interval from this

empirical distribution by selecting the appropriate percentiles, such as the 2.5th and

97.5th percentiles for a 95% confidence level. This methodology not only quantifies the

variability inherent in the performance metrics but also provides a robust framework

for statistical inference.

It is important to note that while overlapping Confidence Intervals may

suggest no significant difference between performances, this is not always a definitive

conclusion. The degree of overlap does not perfectly correspond to statistical

significance, and a more formal hypothesis test may still be required to draw

conclusions. On the other hand, if the intervals do not overlap, there is a stronger

indication that the difference in performance might be statistically significant.

In this context, we are considering the samples as independent, which is

essential for interpreting the intervals and the results of hypothesis testing correctly.

A more formal approach would involve hypothesis testing, where we set the null

hypothesis H0, that θi = θ j , against the alternative hypothesis HA, that θi ̸= θ j , for

i ̸= j . This approach, using the appropriate significance level α, would provide a

more rigorous determination of whether the observed difference in performance is

statistically significant.

3.3.2 Comparison through Paired Samples

However, since each bootstrap sample contains the Gold Standard and the predictions

made by each algorithm, it is possible to calculate both the performance of each

algorithm for every bootstrap sample and the performance differences between pairs

of algorithms. This approach, known as the paired bootstrap method, is used here,

as discussed by Chernick (2011) [17] and Efron (1994) [24]. Confidence Intervals

at the 95% level for the difference in performance between paired samples are

constructed using the same method as before. Specifically, these intervals compare the

performance of the top algorithm against the second place, the top algorithm against

the third place, and so on.
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If the Confidence Interval for the difference includes zero, it suggests that the

performance of the two algorithms is indistinguishable in the population from which

the dataset is drawn, meaning H0 cannot be rejected.

3.3.3 Statistical Hypothesis Testing

In Section 3.3.1, we introduced the conceptual ideas for constructing Confidence

Intervals for comparison. Meanwhile, Section 3.3.2 outlined the theoretical basis

for comparisons with the best-performing competitor. These discussions raise

the question of whether it is necessary to formally evaluate the hypothesis of

equality versus difference, given that the test dataset clearly shows one competitor

outperforming the others. This question can be addressed by comparing the

performance of two competitors, A and B , to determine whether A is superior to B

in a larger data population, i.e., θA > θB . Given the test dataset x = x1, . . . , xn , assume

that A outperforms B by a magnitude δ(x) = θA(x)−θB (x). The null hypothesis, H0, is

that A is not superior to B in the overall population, while the alternative hypothesis,

H1, is that it is. Therefore, the goal is to determine the likelihood of a similar victory for

A occurring in a new independent test dataset, denoted as y , assuming that H0 is true.

Hypothesis testing aims to calculate the probability p(δ(X ) > δ(x) | H0, x),

where X represents a random variable considering the possible test sets of size n

that could have been selected, while δ(x) refers to the observed difference, which

is a constant. The probability p(δ(X ) > δ(x) | H0, x) is known as the p-value(x).

Traditionally, if the p-value(x) < 0.05, the observed value δ(x) is considered sufficiently

unlikely to reject H0, indicating that the evidence suggests A is superior to B , as

discussed by Berg-Kirkpatrick (2012) [9].

In most cases, the p-value(x) is not easily calculated and must be approximated.

This work uses the paired bootstrap method, not only because it is widely used, as

discussed by Berg-Kirkpatrick (2012) [9], Bisani (2004) [11], Zhang (2004) [68], and

Koehn (2004) [42], but also because it can be easily applied to any performance metric.

As shown in Berg-Kirkpatrick (2012) [9], the p-value(x) can be estimated by
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computing the fraction of times that this difference is greater than 2δ(x). It is crucial to

remember that this distribution is centered around δ(x), given that X is drawn from x,

where it is observed that A outperforms B by δ(x).

3.4 Summary

This chapter presented the successful implementation of the proposed evaluation

framework, showcasing its ability to provide rigorous and reproducible performance

assessments in competitive settings. By employing statistical methods, such as

Bootstrapping and hypothesis testing, the framework enables precise estimation

of performance metrics, robust participant comparisons, and statistically sound

conclusions regarding their rankings.

The results demonstrated the effectiveness of Confidence Intervals and

hypothesis testing in capturing variability and ensuring the reliability of performance

metrics. Additionally, methods for addressing multiple comparisons, such as the

Bonferroni correction, were implemented, further strengthening the framework’s

analytical capabilities.

In conclusion, this chapter bridges the gap between theoretical design

and practical implementation, offering a detailed guide for evaluating systems in

competitive or research environments. The framework’s flexibility and rigor make it

a powerful tool for advancing fair and transparent evaluations in diverse contexts,

paving the way for more robust decision-making processes in competitive analysis and

algorithm benchmarking.
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4 Performance Comparison in Challenge

Scheme

This chapter focuses on comparing algorithmic performance within the context

of a competitive challenge framework. Performance evaluation is critical in

algorithm development and comparison, particularly in competitive environments

where participants submit models or solutions to predefined tasks. This chapter

delves into the various methods and metrics used to assess the performance of

competing systems, highlighting the complexity of drawing inferences about algorithm

efficiency and effectiveness. By examining traditional approaches alongside the

nuances of specific challenges, this chapter lays the foundation for understanding

how performance metrics shape competition outcomes and contribute to developing

robust algorithms.

4.1 Introduction

Chapter 4 delves into the comparative analysis of Algorithmic Competitions,

examining their frameworks, methodologies, and implications for advancing machine

learning research. Competitions have become pivotal in benchmarking algorithms,

fostering innovation, and driving collaborative problem-solving. This chapter

evaluates key aspects of competitions, such as design principles, evaluation metrics,

and participant dynamics, to understand how they contribute to progress in the field.

The focus is on identifying commonalities and differences across competitions,

exploring their impact on participant engagement, and assessing the effectiveness of

their evaluation schemes. This chapter aims to provide insights into competitions’ role

in shaping research directions and improving algorithmic performance by analyzing

these elements. The findings are expected to guide future competition designs,

ensuring they continue to foster innovation and produce meaningful outcomes for the

broader research community.
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4.2 Performance Comparison

Evaluating algorithm performance is multifaceted, encompassing metrics such as

accuracy and speed. This study aims to infer the performance parameter θ of

algorithms submitted to competitions using a single dataset of size n. The inference

pertains to the broader population from which the dataset is assumed to be drawn.

Traditional approaches in academic competitions rely on punctual estimation,

calculating each system’s performance on a predefined test dataset using specified

metrics. These metrics determine rankings and are often summarized in tables like

Table 4.1, corresponding to Subtask 3 of MeOffendES 2021, organized at IberLEF

2021 and co-located with the 37th International Conference of the Spanish Society

for Natural Language Processing (SEPLN 2021). The main goal of MeOffendES is to

advance research in recognizing offensive language in Spanish-language variants, and

Subtask 3 involves Mexican Spanish non-contextual binary classification. Participants

must classify tweets in the OffendMEX corpus as offensive or non-offensive [55].

OffendMEX is a dataset comprising samples of offensive, aggressive, and vulgar

text in Mexican Spanish, primarily collected from Twitter. Table 4.1 summarizes the

Precision, Recall, and F1 scores results for Subtask 3 of MeOffendES 2021.

Table 4.1: Results for the Non-contextual binary classification for Mexican Spanish,
highlighting precision, recall, and F1 score for each team.

Team precision recall F1

NLPCIC 0.7208 0.7100 0.7154
CIMATMTYGTO 0.6533 0.7600 0.7026
DCCDINFOTEC 0.6966 0.6733 0.6847
CIMATGTO 0.6958 0.6633 0.6792
UMUTeam 0.6763 0.6650 0.6706
Timen 0.6081 0.6000 0.6040
CICIPN 0.6874 0.5350 0.6017
xjywing 0.3419 0.8883 0.4937
aomar 0.3241 0.8750 0.4730
CENAmrita 0.3145 0.9183 0.4685
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4.3 Performance Comparison through Independents

samples

As indicated in Section 3.2.3, a bootstrap procedure is applied, generating B = 10,000

samples, with replacement and size n, from the original dataset containing the n

Gold Standard examples and their predictions. Performance parameters are calculated

for each team within these samples, constructing a sampling distribution of the

performance metrics.

From this distribution, 95% percentile Confidence Intervals for the

performance parameters are generated. Table 4.2 presents the Confidence Intervals

obtained, ordered according to the estimated performance, facilitating interpretation

and comparison among participants.

Table 4.2: Ordered Bootstrap Confidence Intervals for the MeOffendES Challenge. This
table presents the confidence intervals for the performance of competing systems,
calculated using the bootstrap method. The intervals are arranged in order to highlight
the relative differences among participants and provide insights into their comparative
performance.

Precision Recall F1
Team CI Team CI Team CI

NLPCIC (0.6844,0.7572) CENAmrita (0.8962,0.9402) NLPCIC (0.6864,0.7438)
DCCDINFOTEC (0.6585,0.7345) xjywing (0.8632,0.9134) CIMATMTYGTO (0.6739,0.7306)
CIMATGTO (0.6578,0.7338) aomar (0.8485,0.9015) DCCDINFOTEC (0.6536,0.7152)
CICIPN (0.6458,0.7290) CIMATMTYGTO (0.7260,0.7935) CIMATGTO (0.6481,0.7098)
UMUTeam (0.6381,0.7143) NLPCIC (0.6739,0.7458) UMUTeam (0.6393,0.7011)
CIMATMTYGTO (0.6175,0.6888) DCCDINFOTEC (0.6351,0.7112) Timen (0.5713,0.6365)
Timen (0.5691,0.6474) UMUTeam (0.6269,0.7025) CICIPN (0.5665,0.6363)
xjywing (0.3182,0.3656) CIMATGTO (0.6255,0.7011) xjywing (0.4676,0.5196)
aomar (0.3011,0.3470) Timen (0.5608,0.6392) aomar (0.4470,0.4987)
CENAmrita (0.2926,0.3364) CICIPN (0.4946,0.5751) CENAmrita (0.4433,0.4935)

In this way, besides evaluating the performance of a competitor’s algorithm

using the testing data, we can estimate an interval that is likely to contain the

performance for the population from which the testing data were drawn, with a

probability of 0.95 (i.e., α= 0.05).

However, it is important to note that while overlapping Confidence Intervals

may suggest no significant difference between performances, this is not always a

definitive conclusion. The degree of overlap does not perfectly correspond to statistical
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significance, and a more formal hypothesis test may still be required to conclude. On

the other hand, if the intervals do not overlap, there is a stronger indication that the

difference in performance might be statistically significant.

In this context, we consider the samples as independent, which is essential

for correctly interpreting the intervals and the results of hypothesis testing. A more

formal approach would involve hypothesis testing, where we set the null hypothesis

H0, that θi = θ j , against the alternative hypothesis H1, that θi ̸= θ j , for i ̸= j . Using

the appropriate significance level α, this approach would provide a more rigorous

determination of whether the observed difference in performance is statistically

significant.

Figure 4.1: Bootstrap confidence intervals for multi-metric evaluations from the
MeOffendES challenge, illustrating system performances across multiple metrics.
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For the performance metrics of the participant´s systems of OffendMEX

Subtask 3, the 95% Confidence Intervals can be seen in Table 4.2 and Figure 4.1. These

intervals have been ordered to make interpretation easier. As shown, the team with

the highest F1 score is NLPCIC, with a 95% Confidence Interval of (0.6864,0.7438). The

second place is CIMATMTYGTO with an interval of (0.6739,0.7306). Since the first two

intervals overlap, it suggests that the F1 scores of both teams are likely similar in the

population from which the dataset was sampled. In contrast, a significant difference

exists between NLPCIC and Timen.

4.4 Performance Comparison through paired samples

Given that the bootstrap samples include both the Gold Standard and each team’s

predictions, it is feasible to calculate the performance metrics and performance

differences between teams for each sample. This paired bootstrap approach, was used

to construct 95% Confidence Intervals for performance differences. These intervals

specifically compare the top-performing team with the second place, the third place,

and so forth. Table 4.3 and Figure 4.2 present these Confidence Intervals, enabling a

clear evaluation of relative performance.

Recall that if the Confidence Interval for the difference includes zero, it suggests

that the performance of the two algorithms is indistinguishable in the population

from which the dataset was drawn, meaning H0 cannot be rejected. For the F1 score,

the top-performing team is NLPCIC. The intervals indicate that its performance is

statistically similar to that of CIMATMTYGTO and DCCDINFOTEC. However, significant

differences in F1 scores are observed when compared to the other teams.

Regarding recall, the best-performing team was CENAmrita, with no other team

matching its performance. In terms of precision, NLPCIC led, but DCCDINFOTEC,

CIMATGTO, and CICIPN also achieved comparable results.
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Table 4.3: Bootstrap Confidence Intervals for Differences from the Best System.
This table displays the confidence intervals for performance differences between
competing systems and the best-performing system in the MeOffendES Challenge.
The bootstrap method was employed to calculate these intervals, emphasizing the
magnitude and significance of the performance gaps.

Precision Recall F1
NLPCIC CENAmrita NLPCIC

Team ICI Mean SCI Team ICI Mean SCI Team ICI Mean SCI

DCCDINFOTEC -0.0110 0.0243 0.0596 xjywing 0.0060 0.0299 0.0539 CIMATMTYGTO -0.0128 0.0128 0.0385
CIMATGTO -0.0063 0.0250 0.0563 aomar 0.0221 0.0432 0.0643 DCCDINFOTEC -0.0008 0.0307 0.0621
CICIPN -0.0065 0.0334 0.0733 CIMATMTYGTO 0.1211 0.1585 0.1958 CIMATGTO 0.0087 0.0361 0.0635
UMUTeam 0.0116 0.0446 0.0776 NLPCIC 0.1683 0.2084 0.2485 UMUTeam 0.0161 0.0449 0.0736
CIMATMTYGTO 0.0380 0.0677 0.0974 DCCDINFOTEC 0.2058 0.2451 0.2844 Timen 0.0784 0.1112 0.1440
Timen 0.0763 0.1126 0.1488 UMUTeam 0.2122 0.2535 0.2948 CICIPN 0.0788 0.1137 0.1486
xjywing 0.3471 0.3789 0.4108 CIMATGTO 0.2150 0.2549 0.2949 xjywing 0.1896 0.2215 0.2534
aomar 0.3651 0.3967 0.4284 Timen 0.2782 0.3182 0.3582 aomar 0.2105 0.2422 0.2740
CENAmrita 0.3753 0.4063 0.4373 CICIPN 0.3401 0.3833 0.4266 CENAmrita 0.2155 0.2467 0.2779

4.5 Statistical hypothesis Testing

To further illustrate the statistical hypothesis testing process, we delve into the

evaluation of p-values as a measure of significance for performance differences

between competing teams. By leveraging the bootstrap distribution of performance

differences, we gain insights into whether observed differences are likely to occur by

random chance or are statistically meaningful. This approach builds upon the paired

bootstrap methodology described earlier, allowing for precise comparisons of F1 scores

among top-performing teams.

The analysis focuses on key comparisons, such as between NLPCIC and

CIMATMTYGTO, and NLPCIC and DCCDINFOTEC. The p-value is derived by

evaluating the proportion of bootstrap samples that show a difference as extreme as,

or more extreme than, the observed difference. These comparisons reveal whether the

null hypothesis (H0) of no significant difference in performance can be rejected in favor

of the alternative hypothesis (H1).

Figure 4.3 illustrates the p-value(x) process by showing the bootstrap

distribution of the F1 score differences between NLPCIC and CIMATMTYGTO (a), and

NLPCIC and DCCDINFOTEC (b). The values zero, δ(x), and 2δ(x) are highlighted for

better understanding.

When comparing NLPCIC and CIMATMTYGTO in the test dataset x, the
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Figure 4.2: Ordered bootstrap confidence intervals for performance differences in
multi-metric evaluations from the MeOffendES challenge.

difference δ(x) = 0.7154 − 0.7026 = 0.0128 is not significant at the 5% level because

the p-value(x) is 0.1730. On the other hand, when comparing NLPCIC and

DCCDINFOTEC, δ(x) = 0.7154− 0.6847 = 0.0307, which is significant at the 5% level

with a p-value(x) of 0.0292. In other words, NLPCIC is not significantly better than

CIMATMTYGTO but is better than DCCDINFOTEC. In Section 4.4, it was shown through

Confidence Intervals that the evidence supports H0 (same performance) instead of H1

(difference in performance). If we estimate the p-value(x), it would be approximately

2×0.0292 = 0.0584, which is not statistically significant at the 5% level.

Table 4.4 summarizes the differences in the F1 scores between teams and their

corresponding significance levels. The table is presented as a lower triangular matrix,

where each entry represents the difference calculated as the score of the team in the

column minus the score of the team in the row. For instance, NLPCIC outperforms
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Figure 4.3: Bootstrap distribution of the F1 score differences between NLPCIC and
CIMATMTYGTO (a), and NLPCIC and DCCDINFOTEC (b).

CIMATGTO by 0.036, with this difference being statistically significant at the 1% level.

Table 4.4: Pairwise Differences in F1 Scores with Statistical Significance. This table
shows the differences in F1 scores calculated as (column)-(row) for competing systems
in the MeOffendES Challenge. Statistical significance is indicated using the following
notation: † for p < .1, * for p < .05, ** for p < .01, and *** for p < .001. The table highlights
both the magnitude and significance of the performance differences among systems.

NLPCIC CIMATMTYGTO DCCDINFOTEC CIMATGTO UMUTeam Timen CICIPN xjywing aomar

CIMATMTYGTO 0.013
DCCDINFOTEC 0.031 * 0.018
CIMATGTO 0.036 ** 0.023 * 0.006
UMUTeam 0.045 ** 0.032 ** 0.014 0.009
Timen 0.111 *** 0.099 *** 0.081 *** 0.075 *** 0.067 ***
CICIPN 0.114 *** 0.101 *** 0.083 *** 0.077 *** 0.069 *** 0.002
xjywing 0.222 *** 0.209 *** 0.191 *** 0.185 *** 0.177 *** 0.110 *** 0.108 ***
aomar 0.242 *** 0.230 *** 0.212 *** 0.206 *** 0.198 *** 0.131 *** 0.129 *** 0.021 ***
CENAmrita 0.247 *** 0.234 *** 0.216 *** 0.211 *** 0.202 *** 0.135 *** 0.133 *** 0.025 *** 0.004

4.6 Multiple Comparisons

As previously mentioned in Section 3.2.5, multiple testing involves simultaneously

evaluating multiple hypotheses, a common scenario in empirical research. In this

work, we focus on comparing competitors’ performance in a challenge, aiming to

determine whether the first-place performer is statistically better than the second,

third, and so on, up to the m-th participant.

When multiple hypothesis tests are conducted, the likelihood of committing

Type I errors (false positives) increases. This is quantified by the Familywise Error Rate

(FWER) (FWER), which measures the probability of at least one Type I error occurring

among the tests. For m independent tests at significance level α, to mitigate this
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risk, adjustments to the individual significance levels are applied, ensuring the overall

probability of making one or more Type I errors does not exceed a predetermined

threshold, typically set at 0.05.

Various methods have been proposed to address the challenges posed by

multiple comparisons. Here, we review some of the most frequently employed

techniques, as outlined by Benjamini and Hochberg (1995) and Søgaard et al. (2014)

[8, 61].

The choice of method for multiple comparisons depends on the context of

the study and the relative importance of Type I and Type II Errors. In clinical

trials, controlling the FWER is often critical, whereas controlling the FDR may be

more appropriate in exploratory research. Each method has trade-offs between

conservativeness and power, and researchers must carefully consider these when

designing their studies.

To provide a clearer understanding of the impact of different methods for

correcting multiple comparisons, Table 4.5 illustrates the results after applying these

corrections to the data presented in Table 4.4. As observed, out of 45 comparisons,

38 are statistically significant at the α = 0.05 level without considering corrections

for multiple comparisons. After applying the Bonferroni and Holm corrections, this

number is reduced to 34, while using the Benjamini and Hochberg correction results

in 38 significant differences once again.

These methods are essential for controlling the likelihood of false positives,

which can arise when conducting multiple statistical tests simultaneously. Comparing

the outcomes of various correction techniques allows us to better appreciate each

approach’s strengths and limitations.

In the next chapter, these correction methods will be further explored and

applied to competition metrics for a more rigorous comparison. This will allow us

to evaluate the performance of different algorithms under competition constraints,

providing deeper insights into the reliability of the results obtained through these

metrics.
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Table 4.5: Estimated p-values for F1 Score Differences. The table provides p-values for
the observed differences in F1 scores, both unadjusted and adjusted using Bonferroni,
Holm, and False Discovery Rate (FDR) corrections. These adjustments account for
multiple comparisons, ensuring the reliability of statistical inferences.

A B A−B p − value bonferroni holm fdr-hg
NLP-CIC CIMAT-MTY-GTO 0.013 0.162 1.000 0.972 0.182
NLP-CIC DCCD-INFOTEC 0.031 0.030 1.000 0.238 0.035
NLP-CIC CIMAT-GTO 0.036 0.004 0.194 0.047 0.006
NLP-CIC UMUTeam 0.045 0.002 0.081 0.022 0.002
NLP-CIC Timen 0.111 0.000 0.000 0.000 0.000
NLP-CIC CIC-IPN 0.114 0.000 0.000 0.000 0.000
NLP-CIC xjywing 0.222 0.000 0.000 0.000 0.000
NLP-CIC aomar 0.242 0.000 0.000 0.000 0.000
NLP-CIC CEN-Amrita 0.247 0.000 0.000 0.000 0.000
CIMAT-MTY-GTO DCCD-INFOTEC 0.018 0.107 1.000 0.745 0.123
CIMAT-MTY-GTO CIMAT-GTO 0.023 0.015 0.657 0.131 0.018
CIMAT-MTY-GTO UMUTeam 0.032 0.006 0.261 0.058 0.007
CIMAT-MTY-GTO Timen 0.099 0.000 0.000 0.000 0.000
CIMAT-MTY-GTO CIC-IPN 0.101 0.000 0.000 0.000 0.000
CIMAT-MTY-GTO xjywing 0.209 0.000 0.000 0.000 0.000
CIMAT-MTY-GTO aomar 0.230 0.000 0.000 0.000 0.000
CIMAT-MTY-GTO CEN-Amrita 0.234 0.000 0.000 0.000 0.000
DCCD-INFOTEC CIMAT-GTO 0.006 0.357 1.000 0.972 0.365
DCCD-INFOTEC UMUTeam 0.014 0.173 1.000 0.972 0.190
DCCD-INFOTEC Timen 0.081 0.000 0.000 0.000 0.000
DCCD-INFOTEC CIC-IPN 0.083 0.000 0.000 0.000 0.000
DCCD-INFOTEC xjywing 0.191 0.000 0.000 0.000 0.000
DCCD-INFOTEC aomar 0.212 0.000 0.000 0.000 0.000
DCCD-INFOTEC CEN-Amrita 0.216 0.000 0.000 0.000 0.000
CIMAT-GTO UMUTeam 0.009 0.238 1.000 0.972 0.249
CIMAT-GTO Timen 0.075 0.000 0.000 0.000 0.000
CIMAT-GTO CIC-IPN 0.077 0.000 0.000 0.000 0.000
CIMAT-GTO xjywing 0.185 0.000 0.000 0.000 0.000
CIMAT-GTO aomar 0.206 0.000 0.000 0.000 0.000
CIMAT-GTO CEN-Amrita 0.211 0.000 0.000 0.000 0.000
UMUTeam Timen 0.067 0.000 0.009 0.003 0.000
UMUTeam CIC-IPN 0.069 0.000 0.000 0.000 0.000
UMUTeam xjywing 0.177 0.000 0.000 0.000 0.000
UMUTeam aomar 0.198 0.000 0.000 0.000 0.000
UMUTeam CEN-Amrita 0.202 0.000 0.000 0.000 0.000
Timen CIC-IPN 0.002 0.451 1.000 0.972 0.451
Timen xjywing 0.110 0.000 0.000 0.000 0.000
Timen aomar 0.131 0.000 0.000 0.000 0.000
Timen CEN-Amrita 0.135 0.000 0.000 0.000 0.000
CIC-IPN xjywing 0.108 0.000 0.000 0.000 0.000
CIC-IPN aomar 0.129 0.000 0.000 0.000 0.000
CIC-IPN CEN-Amrita 0.133 0.000 0.000 0.000 0.000
xjywing aomar 0.021 0.000 0.005 0.001 0.000
xjywing CEN-Amrita 0.025 0.000 0.000 0.000 0.000
aomar CEN-Amrita 0.004 0.198 1.000 0.972 0.212
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4.7 Summary

This chapter explored the intricacies of performance comparison in competitive

academic settings, focusing on methods and metrics used to evaluate algorithms in

competitions such as MeOffendES Subtask 3. We discussed the challenges of drawing

inferences from limited data using the test dataset from OffendMEX. We examined how

statistical techniques, such as the bootstrap method, can help improve the reliability

of performance estimates.

A significant portion of this chapter was dedicated to the paired bootstrap

method, allowing for a robust performance comparison between competitors. We

explained how Confidence Intervals are constructed to assess whether observed

differences in performance metrics are significant, providing deeper insight into the

likely generalization of results to larger populations. Additionally, we addressed the

issue of multiple comparisons, emphasizing its importance in competition scenarios

where the performance of several teams is compared simultaneously. Multiple

comparisons require careful statistical handling to avoid inflated error rates, and we

discussed methods such as adjusting confidence levels to maintain the reliability of

conclusions across numerous comparisons.

The chapter also underscored the role of hypothesis testing in academic

competitions, with examples illustrating how observed differences between

top-performing teams can be tested for statistical significance. We demonstrated

how techniques like the paired bootstrap method help assess whether the differences

observed on the test dataset will likely hold in a broader population, ensuring that the

results are not due to chance or specific dataset characteristics.

Overall, this chapter laid the groundwork for understanding how rigorous

statistical methods, including adjustments for multiple comparisons, enhance the

fairness and reliability of algorithm evaluations in competitive contexts. These

methods drive innovation and help identify truly superior solutions.
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5 Comparison of Competitions

This chapter centers on the comparative analysis of competitive challenges in various

fields. Whether in academic, professional, or community contexts, they serve as vital

platforms and are crucial to innovation and identifying top performers. The objective

is to explore their structure and impact, focusing on how they drive excellence and

creativity among participants. By examining different competitive frameworks, this

chapter provides insights into the role of competition in advancing methodologies,

enhancing participant skills, and promoting the development of novel solutions.

Comparison of competitions is essential for understanding their significance and

improving future competitive frameworks.

5.1 Introduction

This Chapter focuses on the practical applications of the methodologies and

frameworks developed throughout this research. This chapter integrates the

theoretical insights and evaluation techniques presented in previous chapters into

concrete implementations and case studies. By examining real-world applications,

the chapter demonstrates the utility and effectiveness of the proposed methods in

addressing challenges in competitive and research-driven environments.

The chapter begins by outlining the datasets and experimental setups used

to validate the proposed frameworks. Key use cases are presented, showcasing how

the methodologies enhance the evaluation and comparison of algorithms in machine

learning competitions. The focus is on illustrating the adaptability of the frameworks

to diverse scenarios, ensuring their relevance across different contexts and challenges.

Additionally, this Chapter discusses the implications of the results obtained

from these applications, emphasizing their significance for advancing the state of the

art. The findings highlight how robust evaluation techniques can foster innovation and

drive meaningful contributions to the field, providing a foundation for future research
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and development.

Through a combination of detailed case studies and critical analysis, this

chapter underscores the practical value of the methodologies developed in this

work and their potential for shaping future directions in algorithmic evaluation and

competition design.

5.2 Comparison of Competitions

Competitions are widespread across diverse domains, ranging from academia to

professional and community settings. These events aim to recognize excellence and

inspire participants to achieve their best. As noted by Escalante (2023), they encourage

individuals to enhance their abilities and pursue higher standards [26]. Similarly, Egele

(2024) highlights their role in fostering personal and professional growth, pushing

participants to expand their boundaries and continually improve [25].

One of the primary benefits of competitiveness in these challenges is the

motivational boost it provides. Driven by the desire to succeed, participants develop a

deeper commitment to the task. This heightened motivation often leads to improved

performance and greater accomplishment.

Furthermore, competitiveness promotes innovation and creativity. In

environments where participants strive to outperform each other, there is a constant

push towards developing novel solutions and approaches. This is particularly evident

in fields such as technology and business, where competitive challenges often lead to

breakthroughs and advancements.

5.3 Competitions Analyzed in the Comparison

Our proposed evaluation methodology is adaptable and designed to be applied

universally to any challenge. We selected several NLP challenges as case studies to

demonstrate their effectiveness and applicability. These competitions, encompassing

various tasks and evaluation metrics, provide diverse scenarios that showcase the
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robustness of our approach. Below, we briefly describe each competition, highlighting

the specific tasks and metrics for ranking participant systems.

MEX-A3T 2019 [5] consists of two tracks. The first track, Author Profiling,

aims to determine the gender, occupation, and place of residence of Twitter users in

Mexico based on their tweets. It incorporates text and images as information sources to

assess their relevance and complementarity in user profiling. Evaluation for this track

is conducted using the macro-averaged F1 score. The second track, Aggressiveness

Detection, focuses on identifying aggressive tweets in Mexican Spanish. The

evaluation is based on the F1 score in the aggressiveness class.

TASS 2020 [31] consists of two tracks: General Polarity at Three Levels and

Emotion Detection; however, in this analysis, we focused solely on the former. The

objective is to evaluate polarity Classification systems for tweets written in Spanish

and their different variants. Participant systems in this competition were ranked based

on the macro-averaged F1 score.

The VaxxStance 2021 challenge [2] aims to determine the stance expressed

on the highly controversial topic of the anti-vaxxers movement in two languages:

Basque and Spanish. The primary objective is identifying whether a given tweet

conveys an against, favor, or neutral (none) stance regarding this predefined topic.1

The competition introduced specific participation categories for Basque and Spanish,

referred to as the Close Track. Within this track, participant systems are presented with

two evaluation choices: Textual, enabling them to work exclusively with the provided

tweets in the target language during development, and Contextual, which permits the

utilization of supplementary Twitter-related data, including user-based features, friend

connections, and retweet information. The Macro-averaged F1 score was also utilized

for these subtasks. Nevertheless, it was exclusively applied to two classes, favor and

against, despite the presence of the none class in the dataset.

EXIST 2021 [59]: Sexism Identification in Social Networks. According to the

following two tasks, participant systems classify tweets and posts from alternative

social media platforms (in English and Spanish). The Sexism Identification task aims

1Open track and Zero-shot track were not considered because of too limited participation
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to determine whether a given text is sexist. Evaluation for this track is done using

the accuracy. The Sexism Categorization task uses only sexist texts; it categorizes

the message based on the type of sexism. The macro-averaged F1 score ranks the

participant systems.

DETOXIS 2021 [64] (DEtection of TOxicity in comments In Spanish) primarily

aims to identify toxicity in Spanish comments posted in response to online news

articles related to immigration. Specifically focusing on the Toxicity Detection task, it

involves classifying comment content as toxic or non-toxic, with participant systems’

performance ranked based on F1 scores.

MeOffendEs 2021 [55] contributes to the progress of research in identifying

offensive language across various Spanish-language variations.2 The subtask analyzed

involves Mexican Spanish non-contextual binary classification, where participant

systems categorize tweets from the OffendMEX corpus as offensive or non-offensive.

The evaluation is based on the F1 score of the offensive class.

REST-MEX 2021 [3] encompasses two objectives: a Recommendation System

and Sentiment Analysis utilizing text data from Mexican tourist destinations. The

Recommendation System task involves forecasting the level of satisfaction a tourist

might experience when suggesting a destination in Nayarit, Mexico, based on the

places they visited and their feedback. Conversely, the Sentiment Analysis task

determines the sentiment expressed in a review provided by a tourist who visited the

most iconic locations in Guanajuato, Mexico. This competition ranked the participant

systems using the metric mean square error (MAE).

REST-MEX 2022 [4] has three tasks: Recommendation System (not analyzed),

Sentiment Analysis, and Epidemiological Semaphore. The Sentiment Analysis

one involves classifying sentiments in tourist reviews about Mexican destinations,

ranging from 1 (most negative) to 5 (most positive), with attractiveness assessment

classes: Attractive, Hotel, and Restaurant, evaluated using the measur eS metric [4].

Based on COVID news, the Epidemiological Semaphore task predicts the Mexican

Epidemiological Semaphore. It employs a four-color system (red, orange, yellow,

2This challenge consists of four subtasks, but only subtask three was used.
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green) with varying restrictions across Mexican states. It is assessed using the

measur eC metric [4].

PAR-MEX 2022 [7] (Paraphrase Identification In Mexican Spanish) consists in

determining whether a pair represents a paraphrase relationship, i.e., classifying them

as either paraphrases or non-paraphrases; the competition utilized the F1 score as the

ranking metric for participant systems.

In all the analyzed competitions, the datasets include all participant systems,

except in EXIST, where only the top 10 for individual languages (English and Spanish)

were included. Additionally, only the best runs from each participant system were

considered in EXIST, TASS, DETOXIS, PAR-MEX, and MeOffendEs. In contrast,

the other competitions included all submitted runs. Another consideration is that

REST-MEX 2021 and EXIST included a baseline, while MeOffendEs included two.

REST-MEX 2022 also included the majority class. As such, when we refer to

competitors, we may be referring to different runs by the same competitor or even to

baselines or majority class representations. All the metrics used in these competitions

are designed so that higher values indicate better performance, except for MAE (Mean

Absolute Error), where lower values represent superior results.

Table 5.1 provides a summary of these competitions, detailing the subtasks,

languages, ranking metrics, and the participants or runs evaluated. Competitions

like MEX-A3T, TASS, VaxxStance, and REST-MEX addressed tasks such as sentiment

analysis, stance detection, and sexism identification. The table also highlights the

primary ranking metrics used, including F1 Score, Accuracy, and Mean Absolute Error

(MAE), specifying whether all participants or only the top performers were considered

in the final evaluation.

5.4 Measuring Competitiveness in Challenges

Various metrics can be employed to assess the competitiveness level in a challenge,

providing valuable insights into how closely matched the participants are in terms

of performance. These metrics aim to quantify the degree of similarity or disparity
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Table 5.1: Overview of evaluated competitions, detailing subtasks, languages, ranking
metrics, and the participants or runs considered. These provide a comprehensive
summary of the competitions analyzed in this chapter.

Competition Subtask / Language Ranking metric Participants/Runs
Considered

Author Profiling (Spanish, text and images) Macro-averaged F1 Score
MEX-A3T 2019

Aggressiveness Detection (Spanish) F1 Score
All participants

TASS 2020 General Polarity (Spanish) Macro-averaged F1 Score All participants (Best Runs)

VaxxStance 2021 Stance Detection (Basque, Spanish) Macro-averaged F1 Score
for "favor" and "against"

All participants

Sexism Identification (English, Spanish) Accuracy
EXIST 2021

Sexism Categorization (English, Spanish) Macro-averaged F1 Score
Top 10 Runs for each language

DETOXIS 2021 Toxicity Detection (Spanish) F1 Score All participants (Best Runs)

MeOffendEs 2021 Offensive Language Identification (Mexican
Spanish)

F1 Score All participants (Best Runs)

Sentiment Analysis (Mexican Spanish) MAE
REST-MEX 2021

Recommendation System (Mexican
Spanish)

MAE
All participants (baseline)

Sentiment Analysis (Mexican Spanish) measur eSREST-MEX 2022
Epidemiological Semaphore (Mexican
Spanish)

measur eC
All participants (majority class)

PAR-MEX 2022 Paraphrase Identification (Mexican Spanish) F1 Score All participants (Best Runs)

among competitors, offering a deeper understanding of the challenge dynamics. By

analyzing factors such as score variability, ties, and performance gaps, these measures

can highlight whether the competition is tightly contested, with participants achieving

comparable results, or if there are significant disparities that indicate varying skill levels

or algorithmic effectiveness. Such insights are essential for organizers to evaluate the

challenge’s effectiveness and for participants to understand their relative standing.

Scores Variability

The variability of scores is a fundamental measure of competitiveness. A lower

standard deviation (σ) indicates that scores are closely clustered around the mean (µ),

suggesting a highly competitive challenge.

σ=
√√√√ 1

N

N∑
i=1

(xi −µ)2

Coefficient of Variation (CV)

The coefficient of variation (CV) provides a normalized measure of dispersion relative

to the mean score. A smaller CV implies that performance scores are tightly clustered,
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highlighting a competitive environment.

CV = σ

µ
×100%

Number of Ties

The number of ties reflects the level of competitiveness, with more ties suggesting

that multiple participants achieved similar performance levels, indicative of a tightly

contested challenge.

Performance Difference

The performance difference between the winner and the median competitor measures

the gap between the top and average performances. A smaller value suggests a more

competitive environment with less disparity among participants.

PD = |wi n.−med .|

5.5 Results

In Tables 5.3 to 5.7, we use eight competitions as case studies to demonstrate the

applicability of our methodology. Each table shows the information described in

Table 5.2.

In the subsequent tables, we present the results of various NLP competitions

to illustrate the practical application of these metrics. These tables include

detailed performance metrics for each competition, providing insights into their

competitiveness and potential for improvement.

The competitiveness of a Challenge can be evaluated using three primary

aspects: the number of ties in relation to the possible comparisons, the coefficient of

variation (CV ) of participants’ performance, and the performance difference between

the winner and the median competitor (|wi n.−med .|).
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Table 5.2: Metrics used to compare NLP competitions. The table includes descriptions
of the key metrics used to evaluate competitiveness across different challenges.

Name Description
n Test data size
m Number of participants or runs
Ties w/ win Possible ties with the winner (corrections:

none/Bonferroni/Holm/BH)
Poss. compars. Total possible comparisons (m × (m −1)/2)
none/Bonf./Holm/BH Ties between competitors with corrections

(none/Bonferroni/Holm/BH)
|wi n.−med | Performance difference between the winner and

the competitor in the middle of the table
CV Coefficient of variation of competitors’

performance. (CV = 100× sx/x, where x is the
mean of x and sx is the standard deviation of x)

PPI Possible Percentage Improvement, e.g., for F1
score, it’s calculated as 100× (1−F wi nner

1 )

We also introduce the Possible Percentage Improvement (PPI) metric to assess

the potential for improvement in a competition. This is particularly useful for

understanding the room for growth in participants’ performance. Higher PPI values

indicate greater potential for improvement, suggesting that the top performance is still

far from the ideal or maximum possible score.

For example, in the TASS2020 challenge (Table 5.3), the macro-averaged F1

scores across different countries show varying levels of competition. The CV values

range from 12.910 in Uruguay to 31.234 in Costa Rica, indicating different levels

of variability in performance. The PPI values, ranging from 32.98 to 36.647, show

significant room for improvement.

Similarly, in the VaxxStance challenge (Table 5.4), the CV values for the Close

Track-Contextual in Basque (64.766) highlight substantial variability, indicating a less

competitive task compared to others.

When comparing different NLP competitions, different aspects must be

considered. The first aspect is whether the winner is better than the competitors or

other runs. In this regard, we can see that in all competitions, there is at least one

tie with the winner, except in the Close Track-Contextual in Basque in the VaxxStance
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Table 5.3: Results for the TASS 2020 challenge across various countries, illustrating
metrics and performance variability. Metrics include macro-averaged F1 score for
polarity classification tasks in Spanish tweets.

Task General polarity at three levels
Language Spain Peru Costa Rica Uruguay Mexico
Metric macro-averaged F1 score
n 1706 1464 1166 1428 1500
m 3 3 3 3 3
Ties w/ win. (None) 1 1 1 1 1
Ties w/ win. (Bonf.) 1 1 1 1 1
Ties w/ win. (Holm) 1 1 1 1 1
Ties w/ win. (BH) 1 1 1 1 1
Poss. compars. 3 3 3 3 3
None 1 1 1 1 1
Bonf. 1 1 1 1 1
Holm 1 1 1 1 1
BH 1 1 1 1 1
|wi n.−med | 0.010 0.008 0.001 0.016 0.002
CV 24.010 27.310 31.234 12.910 24.625
PPI 32.98 36.647 35.365 33.669 36.599

competition, in the Sentiment task of REST-MEX 2021, and even in DETOXIS.

Overall, these indicators provide a comprehensive view of each competition’s

competitive landscape, helping to identify areas of strength and opportunities for

improvement.

It can be observed from the tables that the most competitive task is Sexism

Identification for the English language, as it has the smallest CV with a value of

0.78%. It also shows that almost all comparisons result in ties compared to the winner.

Additionally, it has one of the smallest |wi n.−med .| values, which is 0.78. It is worth

noting that this task analyzed only the top 10 participants. Something similar happens

with the other EXIST subtasks involving only one language (English, Spanish). If we do

not consider these cases, one of the most competitive competitions is PAR-MEX 2022,

where slightly less than a quarter of the total comparisons result in ties. It has a CV of

4.72% and a |wi n.−med .| of 0.061. At the other extreme, we can find tasks like Close

Track - Contextual in Basque from VaxxStance with a CV of 64.76% and a |wi n.−med .|
of 0.410. Furthermore, one out of every ten comparisons resulted in a tie. Due to the
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Table 5.4: Results for the VaxxStance challenge, comparing textual and contextual
tracks in Basque and Spanish. The metrics focus on macro-averaged F1 scores for
stance detection subtasks.

Task Close Track-Textual Close Track-Contextual
Language Spanish Basque Spanish Basque
Metric macro-averaged F1 score(FAVOR, AGAINST).
n 694 312 694 312
m 5 5 5 5
Ties W/ Win. (None) 1 2 1 0
Ties W/ Win. (Bonf.) 1 2 1 0
Ties W/ Win. (Holm) 1 2 1 0
Ties W/ Win. (BH) 1 2 1 0
Poss. Compars. 10 10 10 10
None 2 3 2 1
Bonf. 2 4 2 1
Holm 2 3 2 1
BH 2 3 2 1
|wi n.−med | 0.068 0.071 0.098 0.410
CV 9.970 19.680 10.463 64.766
PPI 19.084 42.660 10.871 22.291

nature of the MAE metric, this aspect does not include the analysis of its CV .

The calculation of Possible Percentage Improvement (PPI) is proposed to assess

the potential of a task considering its metric. This indicator will be higher when

the gap between the performance of the so-called winner and the ideal value of the

performance metric is large. The indicator works for both metrics where the highest

value is the best and for those where the lowest value is optimal, like MAE in REST-MEX

2021. In the latter case, the order of the difference is reversed. Achieving substantial

improvements will be more challenging when the competition has a low PPI value.

The competitions that were found to have the highest potential for improvement are

MEX-A3T 2019, REST-MEX 2022 in the Epidemiological Semaphore task (although this

task was a particular case due to the pandemic), EXIST in the Sexism Categorization

task, and VaxxStance in the Close Track - Textual task in Basque. All of these tasks and

competitions had values exceeding 39%.
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Table 5.5: Results for the EXIST challenge, detailing performance in Sexism
Identification and Categorization tasks across English and Spanish datasets. Metrics
include accuracy and macro-averaged F1 score.

Task Sexism Identification Sexism Categorization
Language All English Spanish All English Spanish
Metric accuracy macro-averaged F1 score
n 4368 2208 2160 4368 2208 2160
m 31 10 10 28 10 10
None 4 5 3 2 4 2
Bonf. 9 9 7 6 7 5
Holm 7 9 7 2 7 4
BH 5 9 4 2 4 2
Poss. compars. 465 45 45 378 45 45
None 81 41 28 62 35 31
Bonf. 133 45 41 101 43 40
Holm 118 45 41 82 43 39
BH 89 45 37 68 36 33
|wi n.−med | 0.029 0.011 0.016 0.053 0.021 0.029
CV 10.920 0.780 1.190 24.120 2.140 2.260
PPI 21.95 22.28 20.55 42.13 43.96 39.27

Table 5.6: Results for the REST-MEX challenge, focusing on recommendation systems,
sentiment analysis, and epidemiological semaphore tasks. Metrics include Mean
Absolute Error (MAE), measur eS , and measur eC .

Challenge REST-MEX 2021 REST-MEX 2022
Task Recommendation Sentiment Sentiment Epi Semaphore
Metric MAE measur eS measur eC

n 681 2216 12938 744
m 4 15 27 15
None 1 0 2 1
Bonf. 1 0 4 1
Holm 1 0 2 1
HB 1 0 2 1
Poss. compars. 6 105 351 105
none 1 8 16 8
Bonf. 1 12 31 14
Holm 1 9 18 8
BH 1 8 16 8
|wi n.−med | 0.212 0.193 0.023 0.161
CV 84.283 28.740 14.370 38.557
PPI 0.310 0.475 10.761 51.001
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Table 5.7: Results for various challenges including DETOXIS, PAR-MEX, MeOffendEs,
and MEX-A3T. The analysis highlights competitiveness using F1 scores and
macro-averaged F1 scores for diverse NLP tasks.

DETOXIS PAR-MEX MeOffendEs MEX-A3T
Challenge

2021 2022 2021 2019
Toxicity Paraphrase Non Agg author

Task
detection Identification contextual profiling

F1 score macro-averaged
Metric

F1 score
n 891 2821 2182 3156 1500
m 31 8 10 25 4
None 0 1 1 3 1
Bonf. 3 1 2 7 1
Holm 0 1 2 4 1
BH 0 1 1 3 1
Poss. compars. 465 28 45 300 6
none 80 6 7 70 2
Bonf. 135 6 9 91 2
Holm 112 6 8 80 2
BH 85 6 7 63 2
|wi n.−med | 0.223 0.061 0.078 0.098 0.164
CV 42.600 4.722 16.070 19.620 46.491
PPI 35.390 5.758 28.46 52.038 42.581
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5.6 Summary

In this chapter, we comprehensively compared several academic competitions,

focusing on how they foster innovation, skill development, and participant growth.

Through a detailed analysis of various competitive frameworks, we demonstrated the

critical role competitions play in pushing the boundaries of research and development,

especially in areas such as natural language processing (NLP). Competitions like

MEX-A3T, TASS, VaxxStance, and EXIST were examined, highlighting their unique

tasks, evaluation metrics, and the diverse approaches employed by participants.

One of the key takeaways from this comparison is the importance of carefully

designed tasks and evaluation criteria to ensure fair and meaningful comparisons

across systems. We explored how different metrics, such as F1 score, accuracy, and

Mean Absolute Error (MAE), are employed to assess performance and how they shape

the strategies of competing teams. Additionally, we addressed the role of multiple

evaluation tracks, like contextual and non-contextual tasks, which allow participants

to explore different aspects of each challenge.

The comparative analysis also highlighted potential areas for improvement,

both in the design of competitions and in the development of participant systems.

By identifying competitions with the highest potential for performance gains, such

as MEX-A3T and EXIST, we provided insights into how future competitions can be

structured to maximize innovation and challenge participants to push the limits of

their capabilities.

In conclusion, comparing competitions has proven valuable as a crucial tool

for advancing methodologies, improving skills, and fostering creativity across different

areas. This analysis reveals the essential function of competitions in driving research,

encouraging innovation, and promoting the continuous evolution of state-of-the-art

methodologies.
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Conclusions

This chapter presents a detailed synthesis of the research findings, reflections on the

theoretical and practical contributions of the work, and an analysis of the limitations

and avenues for future research. The chapter is organized as follows:

Summary of Research

This thesis set out to achieve several research objectives focused on understanding and

improving the evaluation of algorithms in competitive contexts. The main objectives

were:

• To analyze existing methodologies for comparing algorithms in competitive

scenarios.

• To develop a robust framework for evaluating algorithmic performance, focusing

on statistical tests and comparison metrics.

• To apply the proposed framework to real-world Algorithmic Competitions to

validate its effectiveness.

The research adopted a mixed-methods approach, combining literature review,

methodological development, and empirical case studies. The key findings from this

research include:

• Effectiveness of Statistical Tests: Through various statistical tests, the study

demonstrated that specific tests (e.g., Wilcoxon Signed-Rank Test, Friedman

Test) are more suitable for evaluating Classification algorithms. These tests

provided robust results even when dealing with heterogeneous datasets.

• Performance Evaluation in Competitions: A significant finding focuses on how

algorithm performance is evaluated in competitive frameworks. This includes

using statistical methods and performance metrics. The thesis introduces tools

for comparing results among competitors and draws statistical inferences about
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their performance.

• Evaluation Frameworks for Competitions: A significant contribution of this

thesis is developing a structured framework to compare and assess algorithm

performance across different competitions. The framework facilitates the

fair comparison of results, considering both performance metrics and the

competitive context (e.g., task complexity, participant diversity).

These findings contribute to a deeper understanding of how to fairly and

accurately assess algorithmic performance in competitive settings.

Contribution to Knowledge

The contributions of this thesis to the existing body of knowledge are both theoretical

and practical:

Theoretical Contributions

The theoretical contributions of this thesis lie primarily in the formalization of

competition-based algorithm evaluation. By building on existing literature, this

work extends the current understanding of assessing algorithm performance in a

competitive environment. Specifically, the thesis:

• Expands on statistical tests to offer a more in-depth understanding of algorithm

differences.

• Proposes a new methodology for competition comparison, which can be

adapted to various types of competitions (e.g., Classification, regression).

These theoretical advancements contribute to the broader field of machine

learning, particularly in competitive frameworks, where objective performance

evaluation is crucial.
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Practical Contributions

This work’s practical algorithm differences researchers and practitioners involved

in Algorithmic Competitions. The proposed evaluation framework, tools, and

methodologies can be directly applied to ongoing and future competitions, enhancing

the accuracy and fairness of algorithm assessments. Key practical outcomes include:

• A toolkit for statistical evaluation, enabling competition organizers to compare

and rank participants more effectively.

• Provide participants with actionable feedback on improving their algorithms,

focusing on leveraging statistical tests.

These contributions can help improve the quality and outcomes of future

Algorithmic Competitions, fostering innovation and collaboration among participants.

Versatile Framework for Systematic Evaluation in Competitions and

Beyond

This work introduces a comprehensive methodology designed to compare competitors

systematically and equitably in challenge-based contexts. The proposed framework is

built on transparency, fairness, and reproducibility principles, ensuring a robust basis

for evaluating performance and facilitating decision-making. While its primary focus

is on competitive environments, the methodology’s versatility extends its applicability

to various scenarios, such as comparing algorithms or models in research and

development projects.

The framework emphasizes critical steps to ensure unbiased evaluations. First,

data partitioning involves dividing datasets into training, validation, and testing

subsets, allowing for optimized model development while preventing overfitting.

This process ensures that the evaluation reflects genuine performance rather than

artifacts of the specific dataset. Second, predefined performance metrics are

employed to assess competitors or algorithms consistently and comparably, enabling

a standardized approach to evaluation across different contexts.
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Although initially designed for challenges, this methodology can easily be

adapted to broader use cases. By treating algorithms or models as "competitors,"

researchers and developers can systematically explore multiple approaches within a

project, leveraging the framework’s structure to assess performance rigorously. This

adaptability highlights the framework’s value in facilitating robust evaluations that

extend beyond competitive rankings to more generalized algorithmic comparisons.

The proposed methodology is a structured approach that fosters rigor and

replicability, empowering challenge organizers, researchers, and practitioners to

conduct fair and consistent evaluations. By addressing diverse needs in competitive

and research contexts alike, this framework represents a valuable tool for advancing

transparency and informed decision-making.

Limitations of the Study

While this thesis has made significant contributions, it is important to acknowledge its

limitations:

• Data Availability: The study utilized datasets provided by the organizers

of existing Algorithmic Competitions, whose interest and support were

instrumental in the success of this research. While these datasets offer valuable

insights, they may not fully capture the diversity of challenges encountered in

other competitive contexts, which could limit the generalizability of the findings.

• Narrow Focus on Classification Competitions: Although Classification tasks are

prevalent in Algorithmic Competitions, the thesis primarily focuses on them,

potentially limiting the applicability of the proposed methods to other types of

competitions, such as regression or clustering tasks.

• External Validity: The research is based on a limited number of competitions,

which may affect the external validity of the results. Future studies should

consider a more comprehensive array of competitions across different fields to

enhance the robustness of the findings.
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Addressing these limitations presents opportunities for further research, which

is discussed in the next section.

Future Work

This thesis opens up several avenues for future research. Suggestions for future work

include:

• Expansion to Other Competition Types: Future research could apply

the methodologies developed in this thesis to other types of Algorithmic

Competitions (e.g., regression, forecasting). This would provide a more

comprehensive understanding of how competition structures influence

algorithm performance across different problem domains.

• Improvement of Evaluation Metrics: As Algorithmic Competitions grow in

complexity, there is a need for more refined evaluation metrics that can capture

not only performance but also aspects such as efficiency, scalability, and ethical

considerations. Research in this area could lead to more holistic evaluation

frameworks.

• Consistent Integration of Statistical Tools: A key area for future work is the

consistent integration of statistical tools in problem-solving across machine

learning, Algorithmic Competitions, and related fields. By embedding robust

statistical analyses into the evaluation processes, researchers and competition

organizers can ensure that performance differences between algorithms are

understood more granularly. This could improve the accuracy of competition

results, enable more effective feedback to participants, and foster the

development of better-performing algorithms that are more adaptable across

diverse problem domains.

These areas for future work offer exciting possibilities for advancing both the

theoretical and practical aspects of Algorithmic Competition research.
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Final Remarks

In conclusion, this research offers valuable insights into the field of Algorithmic

Competitions and proposes a new framework for evaluating algorithm performance

in these contexts. The significance of this work lies not only in its contribution

to the theoretical understanding of algorithm comparison but also in its practical

implications for how competitions are structured and evaluated.

The impact of this research extends beyond Algorithmic Competitions

to broader fields that rely on performance-based evaluations. The tools and

methodologies developed here can be adapted to other competitive domains,

enhancing the fairness and accuracy of performance assessments. Moreover, by

fostering more effective competition frameworks, this research encourages innovation

and excellence, ultimately advancing algorithm development’s state-of-the-art.
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A Appendix

A.1 Performance Metrics

Machine learning competitions drive innovation and improve existing techniques and

models. These competitions focus on various tasks, from classification to prediction,

and use specific performance metrics to evaluate the efficacy of submitted models

[56, 62] (Plevris et al., 2022; Sokolova and Lapalme, 2009). Below are some of the most

common performance metrics in these competitions, categorized by classification

and regression and further distinguished by their application to binary and multiclass

classification.

A.1.1 Classification Metrics

1. Accuracy [28] (Binary and Multiclass):

• Description: The proportion of correct predictions out of the total

predictions.

• Usage: Mainly in binary and multiclass classification problems.

• Formula:

Accuracy = Number of correct predictions

Total number of predictions

2. Precision [57] (Binary and Multiclass):

• Description: The proportion of true positives out of all predicted positives.

• Usage: Important in scenarios where the cost of false positives is high.

• Formula:

Precision = True Positives

True Positives+False Positives

3. Recall (Sensitivity or True Positive Rate) [57] (Binary and Multiclass):

95



• Description: The proportion of true positives out of all actual positives.

• Usage: Important in scenarios where it is crucial to capture all positive

cases.

• Formula:

Recall = True Positives

True Positives+False Negatives

4. F1 Score [57] (Binary and Multiclass):

• Description: The harmonic mean of precision and recall.

• Usage: Used when a balance between precision and recall is needed.

• Formula:

F 1 = 2 · Precision ·Recall

Precision+Recall

5. F1 Score Averaged [57] (Multiclass):

• Description: The average of the F1 scores across different classes.

• Usage: Utilized to measure model performance in multiclass classification

problems.

• Formula:

F1avg = 1

N

N∑
i=1

F 1i

where N is the number of classes and F 1i is the F1 score for class i .

6. Micro F1 [57]:

• Description: The F1 score is calculated by aggregating the contributions of

all classes to compute the average metric.

• Usage: Used to evaluate the performance of a model across multiple classes

with equal importance.

• Formula:

Micro F1 = 2 ·∑N
i=1(TPi )

2 ·∑N
i=1(TPi )+∑N

i=1(FPi +FNi )
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where TPi , FPi , and FNi are the true positives, false positives, and false

negatives for class i , respectively.

7. Area Under the ROC Curve (AUC-ROC) [28] (Binary):

• Description: Measures the ability of a model to distinguish between classes.

• Usage: Common in binary classification problems.

• Interpretation: An AUC value close to 1 indicates good performance, while

a value close to 0.5 indicates random performance.

8. Logarithmic Loss (Log Loss) [49] (Binary and Multiclass):

• Description: Measures the uncertainty of the probabilities assigned to

classes.

• Usage: In probabilistic classification, predicting probabilities rather than

specific classes is important.

• Formula:

Log Loss =− 1

n

n∑
i=1

[
yi log(pi )+ (1− yi ) log(1−pi )

]
where yi is the true value and pi is the predicted probability of the class.

9. measureS [4]:

• Description: A metric for evaluating sentiment analysis tasks.

• Usage: Applied to measure the effectiveness of sentiment classification

models.

• Formula:

measur eS =
1

1+M AEp
+F 1A

2
,

where F 1A is the average among the micro F1 for each class (hotel,

restaurant, and attractive), and M AEp is the Mean Absolute Error applied

to the polarity.
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10. measureC [4]:

• Description: A metric for evaluating epidemiological semaphore

predictions.

• Usage: Used to assess the accuracy of predictions for the epidemiological

semaphore, indicating COVID-19 risk levels.

• Formula:

measur eC = F 1w0 +2×F 1w2 +4×F 1w4 +8×F 1w8

15

where F 1w f is the F 1 score to the prediction of the COVID semaphore after

f weeks in the future.

A.1.2 Regression Metrics

1. Mean Squared Error (MSE) [67]:

• Description: The average of the squared differences between predicted and

actual values.

• Usage: Primarily in regression problems.

• Formula:

MSE = 1

n

n∑
i=1

(yi − ŷi )2

2. Root Mean Squared Error (RMSE) [16]:

• Description: The square root of MSE, providing a measure in the same units

as the output values.

• Usage: Similar to MSE but more interpretable.

• Formula:

RMSE =
p

MSE

3. Mean Absolute Error (MAE) [67]:
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• Description: The average of the absolute differences between predicted

and actual values.

• Usage: In regression problems where the interpretability of the average

error is important.

• Formula:

MAE = 1

n

n∑
i=1

|yi − ŷi |

4. Mean Absolute Percentage Error (MAPE) [19]:

• Description: The average of the absolute percentage errors.

• Usage: In regression problems, the data scale varies.

• Formula:

MAPE = 1

n

n∑
i=1

∣∣∣∣ yi − ŷi

yi

∣∣∣∣
These metrics evaluate different aspects of model performance, from overall

accuracy to capturing positive cases and the uncertainty in predictions. The choice of

the appropriate metric depends on the specific problem and the model’s objectives.
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A.2 CompStats Package

This appendix provides a comprehensive guide to using the CompStats library, which

encapsulates the methodologies proposed in this thesis. The examples demonstrate

how to evaluate performance metrics, assess differences, and analyze results across

multiple metrics.

The CompStats library is designed to facilitate robust statistical analyses in

competitive settings. It includes modules for performance evaluation, statistical

testing, and visualizing results, offering a user-friendly interface for single and

multi-metric assessments.

A.2.1 Installation

The library can be installed using pip or Anaconda, depending on user preference. For

detailed documentation, refer to http://compstats.readthedocs.org.

1 pip install CompStats

1 conda install -c conda -forge compstats

Once CompStats is installed, one must load a few libraries.

1 from CompStats import (

2 performance ,

3 difference ,

4 plot_difference

5 )

6 from statsmodels.stats.multitest import multipletests

7 from sklearn.metrics import f1_score

8 import pandas as pd

To illustrate CompStats, we will use the PAR-MEX 2022 dataset. Let us assume

PARMEX_2022.csv is a CSV file where the column y has the ground truth, and the other

columns are the systems’ outputs.
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1 DATA = "PARMEX_2022.csv"

2 df = pd.read_csv(DATA)

A.2.2 Single-Metric Performance Assessment

The performance metric used is the F1 score.

1 score = lambda y, hy:f1_score(y, hy)

The following instructions calculate each system’s performance and the

performance difference relative to the best-performing system. They then compare

the analyzed algorithms using confidence intervals.

1 perf = performance(df , score=score)

2 ins = plot_performance(perf)

Figure A.1: Bootstrap Confidence Intervals for performance. The plot visualizes
the confidence intervals for each system’s performance, showing variability across
bootstrap samples.

1 diff = difference(perf)

2 ins = plot_difference(diff)
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Figure A.2: Ordered Bootstrap Confidence Intervals for performance differences.
Each bar represents the interval for the performance difference relative to the
top-performing system.

Figure A.1 shows the bootstrap confidence intervals for each system’s

performance. Figure A.2 visualizes the ordered confidence intervals for performance

differences relative to the top-performing system.

A p-value is calculated to determine if performance differences are statistically

significant, offering a concise way to assess the reliability of the observed differences.

1 p_values = difference_p_value(diff)

2 p_values

{’baseline’: 0.0, ’temu_bsc’: 0.0, ’UC3M-DEEPNLP’: 0.0, ’FRSCIC’: 0.0,

’Abu’: 0.0, ’Thang CIC’: 0.0, ’Tü Par’: 0.254}

The p-values indicate the likelihood of observing performance differences as extreme

as those in the data, assuming no real difference exists. A p-value below the

significance threshold (e.g., 0.05) suggests a statistically significant difference.

Finally, the p-values are corrected using a Bonferroni correction, which

exemplifies this method of rigorously evaluating significance across multiple tests.

1 result = multipletests(list(p_values.values ()),

2 method=’bonferroni ’)

3 p_valuesC = dict(zip(p_values.keys(),result [1]))

4 p_valuesC
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{’baseline’: 0.0, ’temu_bsc’: 0.0, ’UC3M-DEEPNLP’: 0.0, ’FRSCIC’: 0.0,

’Abu’: 0.0, ’Thang CIC’: 0.0, ’Tü Par’: 1.0}

A.2.3 Multi-Metric Performance Assessment

For multi-metric evaluations, the library supports simultaneous analysis of multiple

metrics, streamlining the comparison process. Each metric is assessed independently

to compute system performance, assess differences, and derive confidence intervals.

1 from CompStats import (

2 performance_multiple_metrics ,

3 plot_performance_multiple ,

4 difference_multiple ,

5 plot_difference_multiple

6 )

7 from sklearn.metrics import (

8 f1_score ,

9 accuracy_score ,

10 precision_score ,

11 recall_score

12 )

13 import seaborn as sns

The performance metrics used are macro-averaged F1 score, accuracy,

precision and recall.

1 metrics = [

2 {"func": f1_score , "args": {"average": "macro"}, ’BiB’: True},

3 {"func": accuracy_score , ’BiB’: True},

4 {"func": precision_score , ’BiB’: True},

5 {"func": recall_score , ’BiB’: True}

6 ]
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The following instructions outline the procedure for evaluating the individual

performance of each system, calculating the difference in their performance relative

to the best-performing system, and comparing the analyzed algorithms through

confidence intervals. For the multi-metric case, this approach is extended to consider

multiple evaluation metrics simultaneously. Each metric is independently analyzed

to compute the performance of the systems, assess their differences relative to the

top-performing system, and derive confidence intervals for each metric.

1 perf = performance_multiple_metrics(df , "y", metrics)

2 face_grid = plot_performance_multiple(perf)

Figure A.3: Bootstrap confidence intervals for multi-metric evaluations. These plots
showcase the performance metrics’ reliability and variability across different criteria.

1 diff = difference_multiple(perf)

2 face_grid_diff = plot_difference_multiple(diff)
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Figure A.4: Ordered bootstrap confidence intervals for performance differences in
multi-metric evaluations. The visualization highlights performance competitiveness
relative to the leading system.

For the multi-metric case, Figure A.3 presents the bootstrap confidence

intervals for each system’s performance across multiple evaluation metrics, providing

a detailed view of their reliability and variability. Similarly, Figure A.4 illustrates

the ordered confidence intervals for performance differences relative to the

top-performing system for each metric, enabling a comprehensive comparison of the

systems under multiple criteria.

A p-value is calculated for each metric to assess whether the performance

differences are statistically significant. This approach provides a detailed evaluation

across multiple dimensions, allowing for a more comprehensive understanding of

the algorithms’ reliability and consistency in various aspects. By analyzing p-values

for each metric, the methodology ensures that significant differences are identified

nuancedly, capturing the strengths and weaknesses of the compared systems under

different evaluation criteria.
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1 for metric , diffs in diff[’winner ’]. items ():

2 print(f"\nFor␣the␣metric␣{metric}␣the␣best␣is␣{diffs[’best ’]}")

3 for key , value in diffs[’p_value ’]. items ():

4 print(f"p-value␣for␣the␣difference␣with␣{key}␣{value}")

For the metric f1_score_average=macro the best is NLP-CIC-TAGE

p-value for the difference with UC3M-DEEPNLP 0.0

p-value for the difference with Abu 0.0

p-value for the difference with baseline 0.0

p-value for the difference with FRSCIC 0.0

p-value for the difference with Tü Par 0.216

p-value for the difference with Thang CIC 0.0

p-value for the difference with temu_bsc 0.0

For the metric accuracy_score the best is NLP-CIC-TAGE

p-value for the difference with UC3M-DEEPNLP 0.0

p-value for the difference with Abu 0.0

p-value for the difference with baseline 0.0

p-value for the difference with FRSCIC 0.0

p-value for the difference with Tü Par 0.208

p-value for the difference with Thang CIC 0.0

p-value for the difference with temu_bsc 0.0

For the metric precision_score the best is NLP-CIC-TAGE

p-value for the difference with UC3M-DEEPNLP 0.008

p-value for the difference with Abu 0.002

p-value for the difference with baseline 0.0

p-value for the difference with FRSCIC 0.0

p-value for the difference with Tü Par 0.0

p-value for the difference with Thang CIC 0.0

p-value for the difference with temu_bsc 0.0

For the metric recall_score the best is baseline

p-value for the difference with UC3M-DEEPNLP 0.0

p-value for the difference with Abu 0.0

p-value for the difference with NLP-CIC-TAGE 0.0

p-value for the difference with FRSCIC 0.0
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p-value for the difference with Tü Par 0.0

p-value for the difference with Thang CIC 0.0

p-value for the difference with temu_bsc 0.106

Finally, the p-values for each metric are corrected using a Bonferroni correction,

demonstrating a rigorous approach to evaluating significance across multiple tests.

This adjustment minimizes the likelihood of false positives and provides a robust

framework for assessing the statistical reliability of performance differences across

various evaluation criteria.

1 correction = ’bonferroni ’

2 for metric , diffs in diff[’winner ’]. items ():

3 print(f"\nFor␣the␣metric␣{metric}␣the␣best␣is␣{diffs[’best ’]}")

4 result = multipletests(list(diffs[’p_value ’]. values ()),

5 method=correction)

6 p_valuesC = dict(zip(diffs[’p_value ’].keys(),result [1]))

7 for key , value in p_valuesC.items():

8 print(f’{key},␣p-value␣corrected␣by␣{correction}␣=␣{value}’)

For the metric f1_score_average=macro the best is NLP-CIC-TAGE

UC3M-DEEPNLP, p-value corrected by bonferroni = 0.0

Abu, p-value corrected by bonferroni = 0.0

baseline, p-value corrected by bonferroni = 0.0

FRSCIC, p-value corrected by bonferroni = 0.0

Tü Par, p-value corrected by bonferroni = 1.0

Thang CIC, p-value corrected by bonferroni = 0.0

temu_bsc, p-value corrected by bonferroni = 0.0

For the metric accuracy_score the best is NLP-CIC-TAGE

UC3M-DEEPNLP, p-value corrected by bonferroni = 0.0

Abu, p-value corrected by bonferroni = 0.0

baseline, p-value corrected by bonferroni = 0.0

FRSCIC, p-value corrected by bonferroni = 0.0

Tü Par, p-value corrected by bonferroni = 1.0

Thang CIC, p-value corrected by bonferroni = 0.0

temu_bsc, p-value corrected by bonferroni = 0.0
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For the metric precision_score the best is NLP-CIC-TAGE

UC3M-DEEPNLP, p-value corrected by bonferroni = 0.056

Abu, p-value corrected by bonferroni = 0.014

baseline, p-value corrected by bonferroni = 0.0

FRSCIC, p-value corrected by bonferroni = 0.0

Tü Par, p-value corrected by bonferroni = 0.0

Thang CIC, p-value corrected by bonferroni = 0.0

temu_bsc, p-value corrected by bonferroni = 0.0

For the metric recall_score the best is baseline

UC3M-DEEPNLP, p-value corrected by bonferroni = 0.0

Abu, p-value corrected by bonferroni = 0.0

NLP-CIC-TAGE, p-value corrected by bonferroni = 0.0

FRSCIC, p-value corrected by bonferroni = 0.0

Tü Par, p-value corrected by bonferroni = 0.0

Thang CIC, p-value corrected by bonferroni = 0.0

temu_bsc, p-value corrected by bonferroni = 0.742

These tools ensure rigorous statistical evaluation across various metrics and

systems.
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