

INFOTEC CENTRO DE INVESTIGACIÓN E
INNOVACIÓN EN TECNOLOGÍAS DE LA

INFORMACIÓN Y COMUNICACIÓN

DIRECCIÓN ADJUNTA DE INNOVACIÓN Y
CONOCIMIENTO

GERENCIA DE CAPITAL HUMANO

POSGRADOS

NEURAL NETWORK
ASSISTED

COMPOSITION FOR
PIANO IN JAZZ

Propuesta de Intervención
Que para obtener el grado de MAESTRO EN CIENCIAS
DE DATOS E INFORMACIÓN

Presenta:

Ismael Medina Muñoz

Asesor:

Dr. Elio Atenógenes Villaseñor García

Ciudad de México, Febrero, 2023

Printing Authorization

Dedications

To my beloved wife, Eugenia. Your
transformation inspires me to keep
going. Thank you for teaching me
that change is the only constant.

To Yen, Joshua, and Mateo, my dear
sons. Knowledge will bring you

closer to freedom. I love you.

To my mother, my father, my brother
Edgar, and his family, thank you for

bringing joy to my life.

To my family, for being my support
and for understanding my absence.

Contents

Introduction 1

1 Music and Artificial Intelligence 3

1.1 Problem definition . 3

1.2 Objectives . 4

1.2.1 General objectives . 4

1.2.2 Specific objectives . 4

1.3 Contribution . 5

2 Theoretical Framework 7

2.1 The problem of music generation as a NLP problem 7

2.1.1 Long Short-Term Memory (LSTM) network 11

2.1.2 Gated Recurrent Unit (GRU) network 13

2.1.3 Comparing LSTM and GRU . 14

3 Data Collection and Exploratory Data Analysis 17

3.1 The Data Collection Challenge . 17

3.2 Exploratory Data Analysis . 21

3.2.1 Analysis of a Single Music Sheet . 21

3.2.2 Full Data Set Analysis and Corpus Building 29

4 Feature Engineering, Model Training, Model Consumption, and Results Com-

parison 35

4.1 Feature Engineering . 35

4.1.1 The n-notes Slices as Encoded Vocabulary 35

4.1.2 Probability Mass Functions for Dynamic Tune Playing 38

4.1.3 Encoding n-notes sequences . 40

4.2 Model Training . 43

4.2.1 Input Tensors . 43

4

4.2.2 Training a model . 44

4.3 Model Consumption . 45

4.3.1 Avoiding To Theme Loops . 46

4.3.2 Dynamic Execution Using Probability Mass Functions 46

4.3.3 Producing New Music Sequences . 47

4.4 Results Comparison . 52

Conclusions 59

Bibliography 60

APPENDIX A 62

List of Figures

2.1 Graphical representation of an RNN (recursive). 10

2.2 Graphical representation of an RNN (unrolled). 10

2.3 Basic neural units. 15

3.1 A MuseScore.org browse page and the filters for jazz piano tunes. 19

3.2 Music sheet page and the "download" button. 21

3.3 The "download" dialog frame and the "MuseScore" file download button. 22

3.4 Amount of n-notes by time slice for each staff. 24

3.5 Amount of n-notes by time slice on staff 1 presented by time signature. . . 25

3.6 Amount of n-notes by time slice on staff 2 presented by time signature. . . 26

3.7 MIDI keys range for each staff. 26

3.8 Histogram of note duration by staff. 27

3.9 Histogram of rest duration by staff. 28

3.10 Amount of n-notes by time slice on staff 1 presented by time signature. . . 30

3.11 Amount of n-notes by time slice on staff 2 presented by time signature. . . 31

3.12 MIDI keys range for each staff. 32

3.13 KDE MIDI keys range for each staff. 33

4.1 1-note slice for the right hand and 0-note slice for the left hand 36

4.2 3-note slice for the right hand and 2-note slice for the left hand 36

4.3 master_n_notes matrix without duplicates removal. 37

4.4 master_n_notes matrix without duplicates. 37

4.5 The durations_distributions matrix. 38

4.6 Comparison of notes duration for left hand (staff 2) and right hand (staff 1). 40

4.7 C-Jam Blues bars with consecutive slices of the same notes and consecu-

tive rests. 41

4.8 The unique_n_notes_sequences matrix. 42

4.9 Mapping of the sequence ID 78846 in the unique_n_notes_sequences

matrix translated to tensor representation. 44

6

4.10 a) Architecture of a LSTM RNN. b) Architecture of a GRU RNN. 45

4.11 Output files created using the JSON response from the Azure ML REST API. 48

4.12 CSV file created using the JSON response from the Azure ML REST API. . . 49

4.13 PNG file created using the JSON response from the Azure ML REST API. . 50

4.14 MusicXML file created using the JSON response from the Azure ML REST

API. 51

4.15 Amount of n-notes in the produced dataset by time slice on staff 1 pre-

sented by time signature. 52

4.16 Amount of n-notes in the produced dataset by time slice on staff 2 pre-

sented by time signature. 52

4.17 Notes duration in staff 1 from the produced dataset presented by time

signature. 53

4.18 Notes duration in staff 2 from the produced dataset presented by time

signature. 53

4.19 Rests duration in staff 1 from the produced dataset presented by time sig-

nature. 54

4.20 Rests duration in staff 2 from the produced dataset presented by time sig-

nature. 54

4.21 MIDI keys range for each staff in the produced dataset. 55

4.22 KDE MIDI keys range for each staff in the produced dataset. 55

List of Tables

4.1 Probability Mass Functions for Dynamic Tune Playing. 40

4.2 n-notes distributions differences. 56

4.3 Notes duration differences. 56

4.4 Rests duration differences. 57

4.5 MIDI keys differences. 57

Abbreviations and acronyms

(NLP): Natural language processing

(GPT): Generative pre-trained transformer

(pmf): Probability Mass Function

(GPU): Graphics processing unit

(vCPU): virtual CPU

Glossary

analogical signal Continuous signal representing some other quantity, i.e., analogous

to another quantity. For example, in an analog audio signal, the instantaneous

signal voltage varies continuously with the pressure of the sound waves [16].

artificial intelligence It’s the capability of a computer system to mimic human-like

cognitive functions such as learning and problem solving [9].

corpus Musical Instrument Digital Interface. Is a technical standard that describes a

communications protocol, digital interface, and electrical connectors that con-

nect a wide variety of electronic musical instruments, computers, and related

audio devices for playing, editing, and recording music [17].

corpus Large set of data with certain organization, it can be for papers, scientific texts,

literary texts, etc. The corpus can be considered as the starting point for scientific

investigation.

F clef Also known as bass clef, the F clef on fourth line is a referring point that sets the

F note over the fourth line of a staff. All the notes can then be placed in relation

to this position. So, G note will be in the space between fourth and fifth line.

G clef Also known as treble clef, the G clef on second line is a referring point that sets

the G note over the second line of a staff. All the notes can then be placed in

relation to this position. So, A note will be in the space between second and third

line.

GPT Generative pre-trained transformer (GPT) stands for a series of pre-trained lan-

guage models (PLM) developed by OpenAI..., which has been the most popular

type of transformers in NLG tasks. PLMs are language models that have been

trained with a large dataset of textual information and can be applied to deal

with specific language-related tasks [18].

10

harmonic sequence In tonal music, the harmonic sequence, as accompaniment for a

melody, is a motivic pattern of two or more harmonies in succession that is re-

stated in transposition, usually twice or three times, preserving the same melodic

shape (relative motion) of each part or voice. By creating harmonic and tonal va-

riety with a unified pattern, the sequence serves as a means of musical develop-

ment [2].

Jazz Jazz is a kind of music in which improvisation is typically an important part. In

most jazz performances, players play solos which they make up on the spot,

which requires considerable skill... In jazz, you may hear the sounds of freedom-

for the music has been a powerful voice for people suffering unfair treatment

because of the color of the skin, or because they lived in a country run by a cruel

dictator [11].

JSON Java Script Object Notation (JSON). JSON is a format for storing and transporting

data. Often used when data is sent from a server to a web page.

KDE A kernel density estimate (KDE) plot is a method for visualizing the distribution

of observations in a dataset, analogous to a histogram. KDE represents the data

using a continuous probability density curve in one or more dimensions. [15].

measures A measure is segment inside a staff that describes musical notation for a

group of notes defined by the time signature. For example, a measure for a 4/4

time signature indicates that the measure will describe 4 notes with duration of

1/4 each inside it. All musical notation should be constrained inside the measure

following the expected elements described by the time signature.

melodic sequence A melodic or chordal figure repeated at a new pitch level (that is,

transposed), thus unifying and developing musical material [2].

music staves The main component for music notation. They consist of 5 lines and 4

spaces where musical notation is placed to describe a tune.

NLP Natural language processing (NLP) refers to the branch of computer science—and

11

more specifically, the branch of artificial intelligence or AI—concerned with giv-

ing computers the ability to understand text and spoken words in much the same

way human beings can [5].

pmf Probability Mass Function of a discrete random variable X gives the probability

that the variable takes a value. The function p is defined as p : R → [0,1].

regular expressions A regular expression is a pattern that the regular expression en-

gine attempts to match in input text. A pattern consists of one or more character

literals, operators, or constructs [7].

REST API In 2000, Roy Fielding proposed Representational State Transfer (REST) as an

architectural approach to designing web services. REST is an architectural style

for building distributed systems based on hypermedia. REST is independent of

any underlying protocol and is not necessarily tied to HTTP. [8].

softmax Function that converts a vector into a probability distribution. It is used to

produce a vector of probability values.

theme It is the main idea of a music tune. The theme makes a music tune a unique

piece. Some jazz tunes themes were played based on how the player imagined

the singer voice would play a written text but using the instrument voice. The

theme will be heard as a repetition of the same music idea during the tune exe-

cution.

Introduction

Artificial Intelligence has taken an important role in activities that were once consid-

ered exclusively human. Generative AI is a vibrant area of research, with increasing

interest in application fields related to the arts. The recent plethora of innovations in

fields like visual arts and natural language processing, which are able to engage in di-

alogue with users, are just two examples of commercial applications that are driving

innovation research for big tech giants. It would not be untrue to say that these inno-

vations are shaping mankind’s development.

Music is an investigative field that presents a challenge. Musical theory itself is chal-

lenging for humans, and music is as diverse and rich as the cultures in which it has

evolved. This research and proposal is intended as a novel approach to creating a gen-

erative artificial intelligence that assists in piano composition for jazz tunes. This genre

was selected because of the challenge that its richness and complexity for musical ex-

ecution and interpretation pose.

By using a Recurrent Neural Net to create new sequences of n-notes from an initial

n-note set and using a probabilistic approach to set the duration of each note in the

produced n-notes set, the generative artificial intelligence described in this document

is the piano composer assistant for jazz tunes.

1

Chapter 1

Music and Artificial Intelligence

1 Music and Artificial Intelligence

As Morán states, "The creation, performance, and appreciation of music obey the su-

perior human ability to discover sound patterns and identify them on subsequent oc-

casions. Without the biological processes of auditory perception and without a cultural

consensus on what is perceived, among at least some listeners, neither music nor mu-

sical communication can exist" [10].

The human ability for communication is the origin of musical genres like Jazz. There

are several efforts to bring artificial intelligence to the music industry. Creativity is an

interesting field. Large projects like Google Magenta, which is intended to extend the

musical creation process instead of replacing it [13], are some of the most cited ex-

ample of those efforts. Another interesting example is the one called MuseNet from

OpenAI based on GPT architecture. It has some interesting capabilities, like multi-

instrument music generation based on existing music styles [12]. This project has the

main purpose of assisting the creative process for jazz piano players.

1.1 Problem definition

As the development of audiovisual content for traditional and novel broadcasting plat-

forms such as TV and the internet increases, musical support is required to achieve

its purpose. The demand for new tunes has increased due to the rise in content cre-

ation. However, the high demand poses a challenge for musical creation due to human

restrictions, such as the time required to create new musical tunes and the constant

need for new music ideas to develop. The creative process can be slowed down by the

lack of either of these two elements.

Having an artificial intelligence that can generate new ideas in a reduced amount of

time would result in the immediate application of the project by accelerating musical

creation based on chunks of melodic sequence and/or harmonic sequence to be used

as a base in the composition process. Interaction with this assistant can be monetized

3

for every single call that users trigger against it based on REST API architecture.

1.2 Objectives

1.2.1 General objectives

The objective is to create a generative artificial intelligence trained using already cre-

ated jazz tunes to generate music staves for the piano. It will generate sequences for

one staff in G clef and a second staff for F clef, as used by piano players. Music se-

quences will be described in several measures. The generative artificial intelligence

will be deployed as a REST API. A further development could be the integration of a

desktop and/or mobile app to consume the REST API.

The jazz tunes to be used to train the generative artificial intelligence are the ones pub-

licly available at MuseScore for jazz tunes that contain piano parts.

1.2.2 Specific objectives

• To get a large score corpus to train the generative artificial intelligence.

• To clean the corpus to extract useful data for coherent training.

• To perform exploratory data analysis over score corpus.

• To train the generative artificial intelligence based in Recurrent Neural Networks

as if it was a two-handed piano player.

• To publish the model as a REST API.

• To overcome already identified issues related to artificial intelligence’s that cre-

ates music going rapidly into monotony and / or loops.

• To imitate aspects of human execution like improvisation.

4

1.3 Contribution

This project aims to create a foundation for others interested in creating a generative

artificial intelligence for other musical genres or extending the capabilities of the gen-

erative artificial intelligence to improve its output.

5

Chapter 2

Theoretical Framework

2 Theoretical Framework

The second chapter aims to provide the reader with the foundational knowledge nec-

essary to understand the elements of the proposed solution to the problem described

in Chapter 1.

2.1 The problem of music generation as a NLP problem

Natural Language Processing (NLP) is a branch of artificial intelligence used to pro-

vide language processing capabilities to computers. NLP algorithms, techniques, and

architectures are well-known for their powerful approach to solving some of the most

challenging problems related to language. Text generation and word prediction based

on a previous sequence of words are just two examples of problems solved by NLP.

Music is a language in itself, and the project uses the same approach used to predict

the next word in a word sequence. Written music consists of a group of notes instead

of a group of characters. Predicting the next word in a sequence is a task that Recurrent

Neural Nets (RNN) are efficient for.

A convenient starting point is the general description of an RNN provided by Skansi

[14], <<Feedforward neural networks can process vectors, and convolutional neu-

ral networks can process matrices (which are translated into vectors). How would

we process sequences of unequal length? If we are talking about, e.g. images

of different sizes, then we could simply re-scale them to match. . . Note, that if

all matrices, we analyse are of the same size they can be represented by long

vectors... If they vary in size, we cannot encode them as vectors and keep the

nice properties... the real problem is how to fit vectors of different dimensions. . .

in a neural network. Everything we have seen so far, needs a fixed-dimensional

vectors. The problem of varying dimensionality can be seen as the problem of

learning sequences of unequal length, and audio processing is a nice example

of how we might need this, since various audio clips are necessarily of different

7

lengths. We could in theory just take the longest and then make all others of

the same length as that one, but this is waste in terms of the space needed. But

there is a deeper problem here. Silence is a part of language, and it is often

used for communicating meaning, so a sound clip with some content labeled with

the label 1 in the training set might be correct, but if add 10s of silence at the

beginning or the end of the clip, the label 1 might not be appropriate anymore,

since the clip with the silence may have a different meaning. Think about irony,

sarcasm and similar phenomena. So the question is what we can do? The an-

swer is that we need a different neural network architecture than we have seen

before. Every neural network we have seen so far has connections which push

the information forward, and this is why we have called them ’feedforward neural

networks’. It will turn out that by having connections that feed the output back

into a layer as inputs, we can process sequences of unequal length. This makes

the network deep, but it does share weights so it partly avoids the vanishing

gradient problem. Networks that have such feedback loops are called recurrent

neural networks>>.

From this description, a detailed definition will be easier to understand. The definition

provided by Goldberg [3] states, <<We use xi:j to denote the sequence of vectors

xi, ...,xj. On a high-level, the RNN is a function that takes as input an arbitrary

length ordered sequence of n di n-dimensional vectors x1:n = x1,x2, ...,xn, (xi ∈Rdi n)

and returns as output a single dout dimensional vector yn ∈Rdout :

yn = RNN(x1:n)

xi ∈Rdi n yn ∈Rdout .

This implicitly defines an output vector yi for each prefix x1:i of the sequence x1:n.

We denote by RNN* the function returning this sequence:

y1:n = RNN∗(x1:n)

yi = RNN(x1i)

8

xi ∈Rdi n yi ∈Rdout .

The output vector yn is then used for further prediction. For example, a model for

predicting the conditional probability of an event e given the sequence x1:n can

be defined as p(e = j |x1:n) = softmax(RNN(x1:n) ·W+b)[j], the j th element in the

output vector resulting from the softmax operation over a linear transformation

of the RNN encoding yn = RNN(x1:n). The RNN function provides a framework

for conditioning on the entire history x1, ...,xi without resorting to the Markov

assumption which is traditionally used for modeling sequences... Indeed, RNN-

based language models result in very good perplexity scores when compared to

ngram-based models. Looking in a bit more detail, the RNN is defined recursively,

by means of a function R taking as input a state vector si−1 and an input vector xi

and returning a new state vector si. The state vector si is then mapped to an output

vector yi using a simple deterministic function O(·)... The base of the recursion

is an initial state vector, s0, which is also an input to the RNN. For brevity, we

often omit the initial vector s0, or assume it is the zero vector. When constructing

an RNN, much like when constructing a feed-forward network, one has to specify

the dimension of the inputs xi as well as the dimensions of the outputs yi. The

dimensions of the states si are a function of the output dimension...

RNN∗(x1:n;s0) = y1:n

yi =O(si)

si = R(si−1,xi)

xi ∈Rdi n yi ∈Rdout si ∈R f (dout)

The functions R and O are the same across the sequence positions, but the RNN

keeps track of the states of computation through the state vector si that is kept

and being passed across invocations of R .>>

Goldberg presents a figure to represent a recursive RNN graphically. This is figure num-

ber 2.1.

9

Figure 2.1: Graphical representation of an RNN (recursive).

Goldberg continues describing RNNs, stating that, <<This presentation follows the

recursive definition, and is correct for arbitrarily long sequences. However, for a

finite sized input sequence (and all input sequences we deal with are finite) one

can unroll the recursion>>

The structure described by Goldberg is the following.

Figure 2.2: Graphical representation of an RNN (unrolled).

Lastly, Goldberg finalizes the description by stating that, <<While not usually shown

in the visualization, we include here the parameters θ in order to highlight the

fact that the same parameters are shared across all time steps. Different instan-

tiations of R and O will result in different network structures, and will exhibit

different properties in terms of their running times and their ability to be trained

10

effectively using gradient-based methods. However, they all adhere to the same

abstract interface. We will provide details of concrete instantiations of R and O-

the Simple RNN, the LSTM, and the GRU-... Before that, let’s consider working

with the RNN abstraction. First, we note that the value of si (and hence yi) is

based on the entire input x1, ...,xi. For example, by expanding the recursion for

i = 4 we get:

s4 = R(s3,s4)

= R(R(s2,x3),x4)

= R(R(R(s1,x2),x3),x4)

= R(R(R(R(s0,x1),x2),x3),x4)

Thus, sn and yn can be thought of as encoding the entire input sequence... Is the

encoding useful? This depends on our definition of usefulness. The job of the

network training is to set the parameters of R and O such that the state conveys

useful information for the task we are trying to solve>>.

For this project, a Long Short-Term Memory (LSTM) network and Gated Recurrent Unit

(GRU) network were implemented. The explanation of them is described in the follow-

ing subsections.

2.1.1 Long Short-Term Memory (LSTM) network

The synthesized definition of an LSTM given by Jurafsky [6] will be the starting point for

the reader to identify its usefulness in solving the problem this project is for. He states

that, <<LSTM divides the context management problem into two sub-problems:

removing information no longer needed from the context, and adding information

likely to be needed for later decision making. The key to solving both problems is

to learn how to manage this context rather than hard-coding a strategy into the

architecture. LSTMs accomplish this by first adding an explicit context layer to

the architecture (in addition to the usual recurrent hidden layer), and through the

use of specialized neural units that make use of gates to control the flow of infor-

11

mation into and out of the units that comprise the network layers. These gates

are implemented through the use of additional weights that operate sequentially

on the input, and previous hidden layer, and previous context layers. The gates

in an LSTM share a common design pattern; each consists of a feedforward layer,

followed by a sigmoid activation function, followed by a pointwise multiplication

with the layer being gated. The choice of the sigmoid as the activation function

arises from its tendency to push its outputs to either 0 or 1. Combining this with

a pointwise multiplication has an effect similar to that of a binary mask. Values

in the layer being gated that align with values near 1 in the mask are passed

through nearly unchanged; values corresponding to lower values are essentially

erased. The first gate we’ll consider is the forget gate. The purpose of this gate

to delete information from the context that is no longer needed. The forget gate

computes a weighted sum of the previous state’s hidden layer and the current

input and passes that through a sigmoid. This mask is then multiplied by the

context vector to remove the information from context that is no longer required.

ft =σ(U f ht−1 +W f xt)

kt = ct−1 � ft

The next task is compute the actual information we need to extract from the

previous hidden state and current inputs — the same basic computation we’ve

been using for all our recurrent networks.

g t = tanh(Ug ht −1+Wg xt)

Next, we generate the mask for the add gate to select the information to add to

the current context.

it =σ(Ui ht−1 +Wi xt)

jt = g t � it

12

Next, we add this to the modified context vector to get our new context vector.

ct = jt +kt

The final gate we’ll use is the output gate which is used to decide what infor-

mation is required for the current hidden state (as opposed to what information

needs to be preserved for future decisions).

ot =σ(Uoht−1 +Wo xt)

ht = ot � tanh(ct)

... Given the appropriate weights for the various gates, an LSTM accepts as input

the context layer, and hidden layer from the previous time step, along with the

current input vector. It then generates updated context and hidden vectors as

output. The hidden layer, ht , can be used as input to subsequent layers in a

stacked RNN, or to generate an output for the final layer of a network.>> Its

capability to forget what is no longer relevant was used to produce a LSTM model to be

compared against a GRU model. The model to be published in the web service would

be the one with higher performance.

2.1.2 Gated Recurrent Unit (GRU) network

For GRU, a great description is the one from Jurafsky [6]. He states that, <<LSTMs

introduce a considerable number of additional parameters to our recurrent net-

works. We now have 8 sets of weights to learn (i.e., the U and W for each of

the 4 gates within each unit), whereas with simple recurrent units we only had 2.

Training these additional parameters imposes a much significantly higher train-

ing cost. Gated Recurrent Units (GRUs)... ease this burden by dispensing with

the use of a separate context vector, and by reducing the number of gates to 2 -

a reset gate, r and an update gate, z .

rt =σ(Ur ht−1 +Wr xt)

13

zt =σ(Uzht−1 +Wz xt)

As with LSTMs, the use of the sigmoid in the design of these gates results in a

binary-like mask that either blocks information with values near zero or allows

information to pass through unchanged with values near one. The purpose of the

reset gate is to decide which aspects of the previous hidden state are relevant to

the current context and what can be ignored. This is accomplished by performing

an element-wise multiplication of r with the value of the previous hidden state.

We then use this masked value in computing an intermediate representation for

the new hidden state at time t .

h̃t = tanh(U (rt � ht1)+Wxt)

The job of the update gate z is to determine which aspects of this new state will

be used directly in the new hidden state and which aspects of the previous state

need to be preserved for future use. This is accomplished by using the values in

z to interpolate between the old hidden state and the new one.

ht = (1− zt)ht−1 + zt h̃t

>>

Both LSTM and GRU are useful for model training, and either can be used to create a

deployable model.

2.1.3 Comparing LSTM and GRU

LSTMs and GRUs have differences in the way they handle context retention and mem-

ory complexities. GRUs are lighter to process than LSTMs because of the context vec-

tor at the input and output. Figure 2.3 shows a basic comparison of the LSTM memory

unit (c) and GRU (d), the basic feedforward unit (a), and the unit for a simple recurrent

network (b), as described by Jurafsky [6].

14

Figure 2.3: Basic neural units.

15

Chapter 3

Data Collection and Exploratory Data

Analysis

3 Data Collection and Exploratory Data Analy-

sis

The third chapter aims to explain to the reader how the corpus was built and the ex-

ploratory data analysis process. To address the problem described in Chapter 1, it was

necessary to have a corpus of piano jazz music.

3.1 The Data Collection Challenge

To create a useful corpus of piano jazz tunes to train the neural net, the first require-

ment was to have a dataset. There are several possible sources for this, such as audio

files, but this would raise the more challenging issue of separating the piano waves

from waves of other instruments in the music tune, with a high chance of getting an

output audio with low quality and with a high amount of noise and imperfection. Hav-

ing the music in a digital representation was the best alternative data source.

A well-structured way to store data digitally is the corpus format. The main challenge

there is that the structure is intended for producing audio with no need to be human-

readable. Musical devices that create MIDI native data or devices that digitalize ana-

logical signal to produce a MIDI representation are examples of how the representation

of music can be created. MIDI is not constrained by music notation rules, and this in-

creases the complexity for the task of corpus creation and analysis.

The third option was to collect data from music score representations created using

specialized software. The following challenge was to identify specialized software for

music writing that exposed some interface to programmatically read the files it pro-

duces and to get a huge amount of files to be digested. MuseScore.org created a free

music composition and notation software built by developers, contributors, and a user

community. The community supports MuseScore.com, which allows users to store and

share music sheets created using the software. Subscribers of MuseScore.com can get

a Pro subscription to download all public music sheets with no restriction.

17

The decision made to get a dataset to build the corpus to train the neural net was to

create a web scraper to get music sheets using a Pro subscription based on the Python

language. The described web scraper is based on the Musescore-Web-Crawler project

from Arevalo [1]. On the MuseScore.com website, you are allowed to browse music

sheets by music genre and instrument. The browser URL is defined by a set of param-

eters that can be introduced in web scraper calls.

Once you log in to the community website using an already created Pro subscription,

you will be able to browse the music sheets shared by the community. This call is per-

formed using the Selenium WebDriver library for Python. The login process imple-

mented is able to click on the "login" button using the element id in the page content.

The login data needs to be introduced manually. The code for the call is the following.

from selenium import webdriver

from selenium.webdriver.common.by import By

driver = webdriver.Edge()

button = driver.find_element(By.XPATH, "//button[@class=’_30GTb␣

,→ _30GTb␣_39f0R␣_3Afie␣_11AeI␣_1ZXw8␣_3zmA3␣_2wqMT’]")

button.click()

The browsing pages contain a list of music sheets that can be refined using several

filters. Each browsing page shows this list, and you can retrieve the elements in the

content page using regular expressions. Figure 3.1 shows a MuseScore.org browse page

and the filters for jazz piano tunes and the music sheet list.

The code that shows the browsing page iteration and the regular expression to retrieve

the collection of the music sheets is the following.

url_template_head = ’https://musescore.com/sheetmusic?genres=84&

,→ instrument=2&instrumentation=114&page=’

url_template_tail = ’&recording_type=public-domain’

driver.get("https://musescore.com/sheetmusic?genres=84&instrument=2&

,→ instrumentation=114&recording_type=public-domain")

18

Figure 3.1: A MuseScore.org browse page and the filters for jazz piano tunes.

content = driver.page_source

score_urls = set(re.findall(r"https://musescore.com/user/\d+/scores/\

,→ d+", content))

for i in range(2, 39):

url_to_save = url_template_head + str(i) + url_template_tail

driver.get(url_to_save)

content = driver.page_source

temp_urls = set(re.findall(r"https://musescore.com/user/\d+/

,→ scores/\d+", content))

score_urls.update(temp_urls)

Notice the URL query built on the url_template_head variable contains the genres,

the instrument, the instrumentation, and the page parameters. The parameter

page is dynamic and changes on each cycle. The last part of the URL query filters

public-domain music sheets using the url_template_tail variable. The content

19

variable is for the page content, this content is parsed to get the scores. The regular ex-

pression pattern to be captured is r"https://musescore.com/user/d+/scores/d+".

Once the list is built using the score_urls variable, iterating each score URL is per-

formed using the following code:

successes = []

for page in score_urls:

try:

driver.get(page)

downloaddialog = driver.find_element(By.XPATH, "//button[

,→ @class=’_30GTb␣_30GTb␣_3aHmn␣_17bLW␣_39f0R␣_3Afie␣

,→ _3CiIP␣_1ZXw8␣_33wzU␣_2wqMT’]")

downloaddialog.click()

time.sleep(2)

scorebutton = driver.find_element(By.XPATH, "//button[@class=’

,→ _39f0R␣_3Afie␣_1EgpX␣_2zKSV␣_2wqMT’]")

scorebutton.click()

print(".", end= ’’)

time.sleep(3)

if (driver.page_source.__contains__(’Page␣not␣found’) and

,→ driver.page_source.__contains__(’Sorry␣about␣that.’)):

print("#", end= ’’)

continue

else:

successes.append(page)

except:

print("!", end= ’’)

time.sleep(2)

continue

The previous code shows that the first step is to load the music sheet page, and the first

activated button is the "Download" button referenced by the downloaddialog vari-

20

able. Figure 3.2 shows the objects and the "Download" button inside the iterated page.

Figure 3.3 shows the "download" dialog frame and the "MuseScore" file download but-

ton.

Figure 3.2: Music sheet page and the "download" button.

The second step is to click the "MuseScore" file download button. This action automat-

ically saves the MSCZ file in the default "Downloads" folder for the Windows Operating

System. This iterative process was run to get the data collection. The total number of

files collected using this process was 634.

3.2 Exploratory Data Analysis

Exploring the data from music sheets presented several challenges. The journey of the

exploratory data analysis of the dataset to build the corpus is described below.

3.2.1 Analysis of a Single Music Sheet

To demonstrate the concepts of music reading using Python, a convenient starting

point is to learn how to read a single music sheet and explore its content. The library

used to read MuseScore music sheets was MS3, developed by Johannes Hentschel and

21

Figure 3.3: The "download" dialog frame and the "MuseScore" file download button.

publicly available at ms3. The library can open a single music sheet file using the

Score object, which describes score metadata. The score is divided into parts (Parts

object), each of which describes the staves (Staves object) associated with an instru-

ment (Instrument object). This metadata allows the extraction of the set of notes and

rests (notes_and_rests) as a pandas.DataFrame for the parts that describe the staves

of an instrument.

The notes_and_rests pandas DataFrame describes a score using several columns. The

columns used for the analysis are described below [4].

• Measure Counts (mc). Measure count, identifier for the measure units in the

XML encoding. Always starts with 1 for correspondence to MuseScore’s status

bar.

• Measure Numbers (mn). Measure number, continuous count of complete mea-

sures as used in printed editions. Starts with 1 except for pieces beginning with a

pickup measure, numbered as 0. MNs are identical for first and second endings!

• Measure Count On Set (mc_onset). The value for mc_onset represents, expressed

as fraction of a whole note, a position in a measure where 0 corresponds to the

22

earliest possible position (in most cases beat 1).

• Measure Number On Set (mn_onset). The value for mn_onset represents, ex-

pressed as fraction of a whole note, a position in a measure where 0 corresponds

to the earliest possible position of the corresponding measure number (MN).

• Time Signatures(timesig). The time signature timesig of a particular measure

is expressed as a string, e.g. ’2/2’. The actual duration of a measure can deviate

from the time signature for notational reasons: For example, a pickup bar could

have an actual duration of 1/4 but still be part of a ’3/8’ meter, which usually has

an actual duration of 3/8.

• Staff (staff). In which staff an event occurs. 1 = upper staff.

• Duration (duration). Duration of an event expressed in fractions of a whole note.

Note that in note lists, the duration does not take into account if notes are tied to-

gether; in other words, the column expresses no durations that surpass the final

bar line.

• MIDI Piano key (midi). MIDI pitch with 60 = C4, 61 = C#4Db4B##3 etc.

The selected tune to be analyzed is Danny Boy from the Tokyo Solo played by Keith

Jarret and transcribed in a MuseScore music sheet that was collected using the web

scraping technique described previously. The music sheet can be found at Keith Jarrett

- Danny Boy Londonderry Air Tokyo Solo 2002. The original live tune can be found at

Keith Jarrett - Danny Boy (Londonderry Air).

A first hypothesis was that a piano player is a two-handed person with 5 fingers each.

The piano player would be able to pulsate 10 piano keys at the same time. From now

on, we will define a time slice as a set of music notes and rests that occur at the same

time. To accept or reject the hypothesis, a grouping of midi notes by mc and mc_notes

on each staff to produce column count_n_notes was generated. Figure 3.4 shows

the histogram of pulsated keys in a single time slice for each staff.

A more detailed analysis adds a column to the grouping, the timesig. This grouping

produces a new column called n-notes that represents the notes pulsed in a single

23

Figure 3.4: Amount of n-notes by time slice for each staff.

time slice for each time signature per staff. Figures 3.5 and 3.6 show this detailed anal-

ysis.

The three mentioned figures confirm that it is not usual to pulsate more than 5 keys by

each staff in the same time slice. As each staff is associated with a single hand for the

piano player, excluding any pulsated keys above the fifth won’t have a higher impact

on a summarization of the tune execution.

The second hypothesis is that each staff would confirm that the left hand, associated

with staff 2, would play lower midi keys while the right hand, associated with staff 1,

would play higher midi keys. Figure 3.7 shows that the hypothesis is true.

An interesting analysis is to identify the duration of the notes and show them in a his-

togram, as music is not just about notes but also about their duration. Figure 3.8 shows

that some notes durations like 1
8 , 1

4 and 1
16 are the most common in the score.

A second interesting analysis is to identify the duration of the rests and show them in

a histogram. Rests are also part of the music, and their duration cannot be left apart.

Figure 3.9 shows that some rest durations like 1
8 , 1

4 and 1
2 are the most common in the

score.

All the hypotheses and analyses performed against a single music sheet apply to all

24

Figure 3.5: Amount of n-notes by time slice on staff 1 presented by time signature.

downloaded music sheets. These activities are going to be executed on the complete

dataset in the following subsection.

25

Figure 3.6: Amount of n-notes by time slice on staff 2 presented by time signature.

Figure 3.7: MIDI keys range for each staff.

26

Figure 3.8: Histogram of note duration by staff.

27

Figure 3.9: Histogram of rest duration by staff.

28

3.2.2 Full Data Set Analysis and Corpus Building

The set of 634 files was processed, but 172 files could not be opened due to errors

found by the ms3 library. The resulting corpus consists of 502 music sheets that can be

opened and analyzed. After the initial analysis, it was found that not all music sheets

have one or two staves, but some have three or four. The third and fourth staves are

related to the song’s theme played using the piano, but they are not the main piano

playing staves. Therefore, they were excluded from the model training.

The first hypothesis is whether music sheets describe more than five keys played per

staff, as we defined that a piano player would be able to play that number of piano keys

at the same time slice, and if those cases are uncommon. Figures 3.10, 3.11 confirm

that it is not usual to play more than five keys per staff in the same time slice. As each

staff is associated with a single hand for the piano player, excluding any played keys

above the fifth will not have a significant impact on summarizing the tune’s execution.

29

Figure 3.10: Amount of n-notes by time slice on staff 1 presented by time signature.

30

Figure 3.11: Amount of n-notes by time slice on staff 2 presented by time signature.

31

Notes duration and rests duration were also analyzed for staves one and two. Remem-

ber that they are the main staves for model training based on earlier findings during

exploratory data analysis.

Having these notes and rests durations is the main input to create probability mass

functions to obtain random values from them. This is the selected method to provide

the AI with the ability to play the created tune as humans do. The second hypothesis

is that each staff would confirm that the left hand, associated with staff 2, would play

lower MIDI keys while the right hand, associated with staff 1, would play higher MIDI

keys. Figure 3.12 shows that the hypothesis is true. Staves three and four can be seen

there, but they don’t add much more information to the corpus. The range values for

the third and fourth staves are so minimal that a KDE plot in Figure 3.13 was needed to

show the existence of a range of values for them.

Figure 3.12: MIDI keys range for each staff.

32

Figure 3.13: KDE MIDI keys range for each staff.

33

Chapter 4

Feature Engineering, Model Training,

Model Consumption, and Results

Comparison

4 Feature Engineering, Model Training, Model

Consumption, and Results Comparison

The fourth chapter aims to explain to the reader how the feature engineering process

was performed and how the neural network model was trained using the vocabulary

produced from the cleaned corpus.

4.1 Feature Engineering

Once the corpus was built, creating the features to feed the neural network for model

creation is a critical step in producing a solution. The following subsections describe

the logic behind feature engineering.

4.1.1 The n-notes Slices as Encoded Vocabulary

A piano player is supposed to play the piano staves using both hands. The neural net is

expected to learn how to play jazz piano tunes with the same ability. Notes pulsed at the

same time, in the same measure of the piano staves are expected to sound harmonious.

As described previously, the set of notes (n-notes) pulsed at the same time will be called

an n-note slice. It is possible to define the 0-note slice as silence. We will split the n-

notes for the left hand (bass clef) and right hand (treble clef). The Exploratory Data

Analysis showed that staff 1 is for the right hand and staff 2 is for the left hand. Each

note in the n-note set for staff 1 and staff 2 is described by its MIDI key value. An n-note

set implies that there is no chance to have two or more notes with the same MIDI key

value in the same slice. For an n-note with n higher than 5, the selected notes to build

the set are those 5 with the lowest MIDI key values.

This will be the minimum piece of learning data for the neural network. Figures 4.1

and 4.2 are examples of what was analyzed in a single n-notes slice to identify note

duplication as well as n-notes with n larger than 5.

35

Figure 4.1: 1-note slice for the right hand and 0-note slice for the left hand

Figure 4.2: 3-note slice for the right hand and 2-note slice for the left hand

Having the sequence of staff 1 and staff 2 slices would serve as a summarized version

of a tune, even if single notes in the staff 1 and staff 2 n-note slice do not preserve their

duration. While note duration is not considered a critical part of the neural network

training process, it is not irrelevant. Note duration and rests duration are the main

inputs to create probability mass functions from which random values are obtained.

This is the selected method to provide the AI with the ability to play the created tune

as humans do in jazz, improvising and experimenting with note duration to create an

unpredictable but pleasant feeling.

Creating a map of staff 1 n-notes and staff 2 n-notes occurring in the same time slice

using a single identifier is a necessary step to reduce the space required to describe

a tune. Creating a master_n_notes matrix by reading all the corpus to collect all the

staff 1 and staff 2 n-notes slices, removing duplicates, and mapping all slices using a

numerical identifier was the tokenization process implemented to create the vocabu-

lary. The matrix is defined using 10 columns. staff01_note01 to staff01_note05de-

36

scribes the keys pulsed using the five fingers of the right hand while staff02_note01

to staff02_note05 describes the keys pulsed using the five fingers of the left hand. It

is necessary to clarify that staff01_note01 doesn’t represent that the thumb finger is

the one that pulsates the piano key if the value is grather than 0 or that the finger didn’t

pulsated any key if the value is 0 but simply that note01, note02, note03, note04 and

note05 for staff01 or staff02 where collected as pulsated keys at the same time regard-

less the finger pressing that key. The slices represented in the master_n_notes matrix

contain duplicated slices, specifically 183,766. Figure 4.3 shows the first elements in

the matrix with duplicates. Notice that it describes the fifth n-notes for staff 1 and the

fifth n-notes for staff 2. The first row describes a slice without pulsated keys. The next

nine rows describe the same slice with a single pulsated key, the key 71 as described in

the staff01_note01 column. The vocabulary must contain non-repeated elements.

Figure 4.4 shows the vocabulary for model training of master_n_notes. The vocabu-

lary size is 18,229.

Figure 4.3: master_n_notes matrix without duplicates removal.

Figure 4.4: master_n_notes matrix without duplicates.

Each element in the vocabulary matrix master_n_notes is identified by the numerical

index of the data frame. This encodes all the different set of piano keys pulsated at the

same time.

37

4.1.2 Probability Mass Functions for Dynamic Tune Playing

During the process of building the master_n_notesmatrix, the duration of notes found

on staff 1 and staff 2 was also collected using a counting approach. The matrix pro-

duced is called durations_distributions and it contains a column for the score

name that was analyzed (file), the staff analyzed (staff), the time signature of the

measure (time_signature), the measure (mc), the position of the note inside the mea-

sure (mc_onset), the note midi value (midi), the note duration (duration) and the

count of notes (count_n_notes). This last column allows us to make sure that the

each element occurs once in the same positions in the score. Figure 4.5 shows the ma-

trix content.

Figure 4.5: The durations_distributions matrix.

This data is the foundation for creating probability mass functions that will be used to

randomly select "duration" values to provide this characteristic to the notes produced

from the to be trained model based on the desired time signature, the staff and the

amount of pulsated notes produced by the model.

def durations_pfm(data, time_signature = ’4/4’, count_n_notes = 1,

,→ staff = 1):

38

staff_notes_durations = data[(data.time_signature ==

,→ time_signature) &

(data.count_n_notes == count_n_notes) &

(data.staff == staff) &

(data.duration.apply(lambda x: frac(x).

,→ denominator).isin([1, 2, 3, 4, 8, 16, 32,

,→ 3, 6, 12])) &

(data.duration.apply(lambda x: frac(x).

,→ numerator).isin([0, 1, 2, 3]))].groupby(

,→ by=’duration’, as_index=False)[’

,→ count_n_notes’]

staff_notes_durations = staff_notes_durations.count()

staff_notes_durations[’distribution’] = staff_notes_durations.

,→ count_n_notes / staff_notes_durations.count_n_notes.sum()

return staff_notes_durations

The construction of the pmf has this definition because a piano player will use the left

hand (staff 2) to play notes in different key range and duration compared with the right

hand (staff 1). Notes duration will also be different for tunes in 4
4 time signature com-

pared with tunes in 5
4 time signature as demonstrated in the exploratory data analysis.

Lastly, the ability to play short duration notes depends on the amount of fingers used to

press keys in the same time. This appear to happen as it is uncommon for piano play-

ers to play n-notes sequences with a high n value using short duration as this would

require them high hand velocity and precision and the produced sounds can be con-

fusing for people listen to them. Notice the function filters out uncommon duration

values. Figure 4.6 is an example of this behavior in a 4
4 time signature tune. Notice

that left hand (staff 2) tents to play more 1
4 notes compared with the right hand (staff

1), right hand tents to play short duration notes, this is noticeable in the proportion of

notes played using 1
16 duration.

The distribution is categorized as discrete since duration is not a continuous value but

39

Figure 4.6: Comparison of notes duration for left hand (staff 2) and right hand (staff 1).

a set of discrete elements. Table 4.1 describes the pmfs created for dynamic tune play-

ing. The application of this function will be explained later in this chapter.

PMFs per staff and time signatures
Staves /
Time sig.

4
4 time sig. 2

4 time sig. 2
2 time sig. 3

4 time sig. 5
4 time sig.

Staff 01

1-notes 1-notes 1-notes 1-notes 1-notes
2-notes 2-notes 2-notes 2-notes 2-notes
3-notes 3-notes 3-notes 3-notes 3-notes
4-notes 4-notes 4-notes 4-notes 4-notes
5-notes 5-notes 5-notes 5-notes 5-notes

Staff 02

1-notes 1-notes 1-notes 1-notes 1-notes
2-notes 2-notes 2-notes 2-notes 2-notes
3-notes 3-notes 3-notes 3-notes 3-notes
4-notes 4-notes 4-notes 4-notes 4-notes
5-notes 5-notes 5-notes 5-notes 5-notes

Table 4.1: Probability Mass Functions for Dynamic Tune Playing.

4.1.3 Encoding n-notes sequences

Using the master_n_notes matrix as identifiers to encode the n-note sequences, the

corpus was read to create sequences of three n-notes as they occurred in the tunes: the

PREVIOUS_N_NOTES, the ACTUAL_N_NOTES, and the NEXT_N_NOTES. This structure is

40

useful as it is equivalent to the vector used to define a sequence of words from the vo-

cabulary. The structure doesn’t contain the n-notes but their IDs from the master_n_notes

matrix. The features produced show two main challenges:

• Contiguous sequences with the same n-notes ID.

• Contiguous sequences of 0-notes ID.

An example of why these structures exist in the corpus is the C-Jam Blues tune. The

music sheet contains the same note played in two consecutive slices, and the same

happens for rests. Figure 4.7 shows this behavior.

Figure 4.7: C-Jam Blues bars with consecutive slices of the same notes and consecutive
rests.

This behavior was identified as the cause for the model produced to learn to go on

loops of the same n-notes sequences or to go on rests. To reduce that chance, consec-

utive rests or consecutive n-notes IDs were identified and removed. Another possible

loop is that with sequences of 2 or more n-notes slices that repeat over and over. The re-

moval of this kind of loop is done later by evaluating model prediction outputs to avoid

this behavior. The matrix containing all this information was called unique_n_notes_sequences.

It contains unique sequences of n-notes. The matrix with duplicated sequences con-

tained 165,563 sequences. Once duplicates were removed, the remaining sequences

were 78,851. We don’t want to overtrain our model with repetitive data to avoid loops.

The unique_n_notes_sequences matrix is the main input for the model training step.

41

Figure 4.8: The unique_n_notes_sequences matrix.

The model training process is described in the following section.

42

4.2 Model Training

The corpus is adequately encoded so far. The process to train a model requires a final

transformation for model training. Both processes are described below.

4.2.1 Input Tensors

The unique_n_notes_sequences matrix is the main input for model training. It de-

scribes a sequence of 3 n-note slices (3 elements from the vocabulary in a sequence)

by their IDs, as shown in figure 4.8. The unique_n_notes_sequences matrix storing

those sequences are to be translated into tensor sequences.

The unique_n_notes_sequencesmatrix describes sequences of 3 n-notes represented

by their IDs. This technique is similar to the one to represent sequences of words from a

vocabulary like this: "i", "trust", "you", or this one: "go", "for", "it". The representation

stored in the matrix is not for plain text values but their IDs from the master_n_notes

matrix.

Figure 4.9 describes the mapping of a single sequence with ID 78,846 as stored in the

unique_n_notes_sequences matrix (upper table) translated to its tensor representa-

tion (the 3 colored vectors below). This tensor consists of 3 vectors to store the one-hot

encoded pulsated n-notes in a sequence of 3 elements. So, each vector is of size 18,229

as this is the length of the vocabulary. Notice that a single element of the vector will

show 1 while 0 will be stored for any other element. All values in the tensor are set to

0, except for the i -th element given by the n-notes ID. The i -th element is set to 1. The

blue vector represent the encoded first n-notes in the sequence, the 179-th element is

set to 1 while any other element is 0. The orange vector represent the encoded follow-

ing n-notes in the sequence, the 18,226-th element is set to 1 while any other element

is 0. Lastly, the green vector represent the encoded following n-notes in the sequence,

the 0-th element is set to 1 while any other element is 0. This 0-th element represents

the rest (no keys pressed), as mentioned previously.

This tensor structure is similar to that used for Natural Language Processing (NLP)

43

Figure 4.9: Mapping of the sequence ID 78846 in the unique_n_notes_sequencesma-
trix translated to tensor representation.

problems. This sequence was used to feed recurrent neural networks as the approach

to create a reliable model for automated music creation based on a single initial n-

notes element. Music n-notes sequences don’t need to be too long, as the previous n-

notes in the sequence maintain a harmonic relationship with the actual n-notes. That

is why using prev_n_notes_id to predict actual_n_notes_id is enough for model

training. This is the approach used during LSTM model training and GRU model train-

ing.

4.2.2 Training a model

For model training, two algorithms were used: LSTM and GRU. The architecture of

the neural network for model training is similar for both. The input layer consumes an

18,229-element input tensor, and this input is the output for the next layer. An LSTM or

GRU layer gets its input from the previous layer. The LSTM or GRU layer gets a tensor

of 18,229 elements, and this layer produces a 1,024-element long output. A dense layer

gets input from the LSTM or GRU layer. This layer gets a 1,024-element long input

and produces an 18,299 output. The last layer produces normalized probability values

using the softmax function. Both architectures are described in Figure 4.10. This is

a simple but good enough architecture to create the artificial intelligence for music

composing assistance.

44

Figure 4.10: a) Architecture of a LSTM RNN. b) Architecture of a GRU RNN.

Both models had similar accuracy for each training round. As there is not a clear win-

ning model, the model to be chosen is the one with the best accuracy for that specific

experimentation round. Notice that produced music is hard to categorize as right or

wrong. As long as a two n-note sequence sounds harmonic, many of them having the

same prev_n_notes_id will be just right. That is why there is no final decision to se-

lect a model other than the criteria given by the accuracy of both. This approach to

model selection is the same that enterprises use for model retraining. The model to be

published for application consumption is the one with the best performance.

This training approach was used for remote training, training, and publishing of the

model using Azure Machine Learning.

4.3 Model Consumption

Consuming the model created and deployed as an endpoint using Azure Machine Learn-

ing requires the definition of a scoring script. The script consumes a vector that de-

scribes an initial set of n-notes. It will also take care of two problems found during

model testing. The first problem is having outputs of n-notes going into repeated se-

quences. The second problem was the need to create a sequence of n-notes, setting

45

duration for them, but in a dynamic execution as jazz piano players would do during

the tune creation phase. The proposed solution to the first problem is described next.

The endpoint receives an initial vector of n-notes. This vector goes into a transforma-

tion to get its ID based on the master_n_notes set. This ID is then used for one-hot

encoding to create a tensor representation of this input. This transformed input is used

as the first call for predicting a tensor, from which the most probable element is then

mapped back to an n-notes ID. This is then translated back to an n-notes set. Each n-

notes set has ten values, the first five are for the n-notes for the treble clef (C clef), and

the latest five are for the bass clef (F clef). The produced n-notes set is then appended

to a Python DataFrame. This new output is used in a 64-bars loop as input to produce

the next n-notes set in the sequence.

4.3.1 Avoiding To Theme Loops

As the sequence is being built, a test for repetition using the last produced n-note set is

performed against groups of previous n-notes in the sequence. If a loop is identified,

then getting another value from the top 5 most probable recent n-note predictions, ex-

cluding the top 1 using random selection, is the approach to avoid loops. This worked

fine during model testing.

4.3.2 Dynamic Execution Using Probability Mass Functions

The second issue to be addressed was providing dynamic duration to the produced se-

quence of n-notes. The approach to achieve this was to use probability mass functions

(pmfs) as described previously. Every single iteration used to produce new n-notes to

be appended in the sequence was used as input to call the random.choices function.

This function accepts the population of notes duration, the weights as the frequency

of each possible note duration and the amount of values to be returned randomly. The

time signature parameter will be one of the following:

• 2
2 for staff 1 and staff 2.

• 2
4 for staff 1 and staff 2.

46

• 3
4 for staff 1 and staff 2.

• 4
4 for staff 1 and staff 2.

• 5
4 for staff 1 and staff 2.

Each time signature and staff is used to produce an output DataFrame, all them con-

taining the same n-notes sequence. The notes will last based on the random duration

from the pmf. The n-notes set for each time signature and the notes’ duration is a new

tune. This is the approach to produce new music as ideas for music composition using

neural nets.

4.3.3 Producing New Music Sequences

When calling the deployed model using the REST API and executing the code described

for scoring, a pandas DataFrame is produced, which is then converted to a JSON doc-

ument as the last part of the scoring code execution. This JSON document contains

the created sequence of n-notes and their duration. The data is then presented locally

using the music21 Python library. This library is used to produce XML scores, MIDI

files, PNG files, and the CSV representation for every n-notes sequence for each time

signature. An example of the output is shown in figures 4.11, 4.12, 4.13, and 4.14. This

same code can be implemented on mobile devices to consume the output from the

REST API endpoint.

47

Figure 4.11: Output files created using the JSON response from the Azure ML REST API.

48

Figure 4.12: CSV file created using the JSON response from the Azure ML REST API.

49

Figure 4.13: PNG file created using the JSON response from the Azure ML REST API.

50

Figure 4.14: MusicXML file created using the JSON response from the Azure ML REST
API.

51

4.4 Results Comparison

Using the model, a set of 100 new scores was created. These scores were used to build

a new dataset to be compared with the original corpus. Those datasets were compared

by their statistical distribution of n-notes, note duration, rest duration, and MIDI keys.

The figures 4.15 and 4.16 show the distribution of n-notes per staff from the newly

created dataset.

Figure 4.15: Amount of n-notes in the produced dataset by time slice on staff 1 pre-
sented by time signature.

Figure 4.16: Amount of n-notes in the produced dataset by time slice on staff 2 pre-
sented by time signature.

Notes duration and rests duration were also analyzed for staves one and two. The

figures 4.17, 4.18, 4.19, and 4.20 show the duration of notes and rests from the new

dataset.

The figure 4.21 shows the range of MIDI keys on the new dataset. The distribution of

those values can be verified in figure 4.22.

52

Figure 4.17: Notes duration in staff 1 from the produced dataset presented by time
signature.

Figure 4.18: Notes duration in staff 2 from the produced dataset presented by time
signature.

53

Figure 4.19: Rests duration in staff 1 from the produced dataset presented by time sig-
nature.

Figure 4.20: Rests duration in staff 2 from the produced dataset presented by time sig-
nature.

54

Figure 4.21: MIDI keys range for each staff in the produced dataset.

Figure 4.22: KDE MIDI keys range for each staff in the produced dataset.

55

The new data produced was compared with the original corpus using the Kolmogorov-

Smirnov two-sided test. This test is intended to identify how different the produced

tunes are compared with the training data. Table 4.2 shows test results by time signa-

ture and staff using the count of n-notes. Table 4.3 shows test results by notes duration.

Table 4.4 shows test results by rests duration. Table 4.5 shows test results by MIDI keys.

The produced tunes are statistically different compared to the training corpus. This

can be interpreted as new ideas for piano jazz tunes composing.

Time signature Staff 1 Staff 2

2/2
p-value = 0.000 p-value = 0.000
statistic = 0.4269 statistic = 0.8958

2/4
p-value = 0.000 p-value = 0.000
statistic = 0.4164 statistic = 0.8958

4/4
p-value = 0.000 p-value = 0.000
statistic = 0.2564 statistic = 0.8958

3/4
p-value = 0.000 p-value = 0.000
statistic = 0.3010 statistic = 0.8958

5/4
p-value = 0.000 p-value = 0.000
statistic = 0.4988 statistic = 0.8958

Table 4.2: n-notes distributions differences.

Time signature Staff 1 Staff 2

2/2
p-value = 0.000 p-value = 0.000
statistic = 0.9162 statistic = 0.8958

2/4
p-value = 0.000 p-value = 0.000
statistic = 0.9359 statistic = 0.8958

4/4
p-value = 0.000 p-value = 0.000
statistic = 0.8658 statistic = 0.8958

3/4
p-value = 0.000 p-value = 0.000
statistic = 0.8705 statistic = 0.8958

5/4
p-value = 0.000 p-value = 0.000
statistic = 0.8771 statistic = 0.8958

Table 4.3: Notes duration differences.

56

Time signature Staff 1 Staff 2

2/2
p-value = 0.000 p-value = 0.000
statistic = 0.8421 statistic = 0.8281

2/4
p-value = 0.000 p-value = 0.000
statistic = 0.8225 statistic = 0.7859

4/4
p-value = 0.000 p-value = 0.000
statistic = 0.8009 statistic = 0.7591

3/4
p-value = 0.000 p-value = 0.000
statistic = 0.8857 statistic = 0.6286

5/4
p-value = 0.000 p-value = 0.000
statistic = 1.0000 statistic = 0.3750

Table 4.4: Rests duration differences.

Staff 1 Staff 2

p-value = 0.000 p-value = 0.000
statistic = 0.1299 statistic = 0.0607

Table 4.5: MIDI keys differences.

57

Conclusions

Conclusions

Assisted composing using neural networks for jazz piano is achievable by defining a

generative AI based on the same approach used to create text as a sequence of words.

Jazz piano music sheets can be translated into the right format to train recurrent neural

networks. These models can be implemented using cloud technologies such as Azure

Machine Learning. Providing music with dynamic execution based on note duration

from probability distributions and avoiding loops by implementing logic to identify

them and select other probable n-notes in the sequence is a suitable approach to im-

plementing assisted composing using neural networks for jazz piano. The produced

tunes are different from the training corpus, which means that the produced ideas for

piano jazz tune composing are innovative.

59

Bibliography

[1] AREVALO, E. MuseScore-Web-Crawler. https://github.com/EvaArevalo/

Musescore-Web-Crawler, (accessed: 2023-03-16).

[2] DEVOTO, M. sequence. https://www.britannica.com/art/

sequence-musical-composition, (accessed: 2023-03-02).

[3] GOLDBERG, Y. Recurrent Neural Networks: Modeling Sequences and Stacks.

Springer International Publishing, Cham, 2017, pp. 164–166.

[4] HENTSCHEL, J. Manual. https://johentsch.github.io/ms3/build/html/

manual/index.html, (accessed: 2023-03-17).

[5] IBM. What is natural language processing? https://www.ibm.com/topics/

natural-language-processing, (accessed: 2023-03-03).

[6] JURAFSKY, D., AND MARTIN, J. H. Speech and language processing : an introduc-

tion to natural language processing, computational linguistics, and speech recog-

nition. third edition draft (october 16th, 2019). (accessed: 2023-02-28), 2019.

[7] MICROSOFT. Regular Expression Language - Quick Reference. https:

//learn.microsoft.com/en-us/dotnet/standard/base-types/

regular-expression-language-quick-reference, (accessed: 2023-03-16).

[8] MICROSOFT. RESTful web API design. https://learn.microsoft.com/en-us/

azure/architecture/best-practices/api-design, (accessed: 2023-03-02).

[9] MICROSOFT. What is artificial intelligence? https://azure.

microsoft.com/en-us/resources/cloud-computing-dictionary/

what-is-artificial-intelligence, (accessed: 2023-02-28).

[10] MORÁN MARTÍNEZ, M. C. Psicología y música: Inteligencia musical y desarrollo

estético. Revista Digital Universitaria [en línea] 10, 11 (November 2009).

[11] OF AMERICAN HISTORY, N. M. What is Jazz? https://americanhistory.si.

edu/smithsonian-jazz/education/what-jazz, (accessed: 2023-02-28).

60

[12] OPENAI. MuseNet. https://openai.com/research/musenet, (accessed: 2023-

03-13).

[13] RESEARCH, G. Magenta. https://research.google/teams/brain/magenta/,

(accessed: 2023-02-28).

[14] SKANSI, S. Introduction to Deep Learning: From Logical Calculus to Artificial Intel-

ligence. Undergraduate Topics in Computer Science. Springer International Pub-

lishing, 2018.

[15] WASKOM, M. seaborn.kdeplot. https://seaborn.pydata.org/generated/

seaborn.kdeplot.html, (accessed: 2023-03-20).

[16] WIKIPEDIA. Analog signal. https://en.wikipedia.org/wiki/Analog_signal,

(accessed: 2023-03-16).

[17] WIKIPEDIA. MIDI. https://en.wikipedia.org/wiki/MIDI, (accessed: 2023-

03-16).

[18] ZHU, Q., AND LUO, J. Generative pre-trained transformer for design concept gen-

eration: An exploration. Proceedings of the Design Society 2 (2022), 1825–1834.

61

APPENDIX A

62

Project Repository

Full code used for this project can be found in this GitHub repository.

63

