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Abstract
This manuscript presents the extreme pivots (EP) metric index, a data structure, to speed up
exact proximity searching in the metric space model. For the EP, we designed an automatic
rule to select the best pivots for a dataset working on limited memory resources. The net
effect is that our approach solves queries efficiently with a small memory footprint, and
without a prohibitive construction time. In contrast with other related structures, our perfor-
mance is achieved automatically without dealing directly with the index’s parameters, using
optimization techniques over a model of the index. The EP’s model is studied in-depth in
this contribution. In practical terms, an interested user only needs to provide the available
memory and a sample of the query distribution as parameters. The resulting index is quickly
built, and has a good trade-off among memory usage, preprocessing, and search time. We
provide an extensive experimental comparison with state-of-the-art searching methods. We
also carefully compared the performance of metric indexes in several scenarios, firstly with
synthetic data to characterize performance as a function of the intrinsic dimension and the
size of the database, and also in different real-world datasets with excellent results.
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1 Introduction

Similarity search, often called proximity search, is a ubiquitous problem in computer science;
it consists of retrieving objects similar to a given query from a collection; a given similarity
function captures the similarity notion. A model for solving similarity search problems is
the metric space model, where the similarity notion is made through a dissimilarity function,
more precisely, a metric distance function, see [39]. The metric space model will be detailed
in the next sections.

Another model for similarity search is that working for non-metric distance functions;
these try to speed up searching taking advantage of relations found in collections beyond
metric properties. They are useful in cases where metric properties cannot be guaranteed
like distance functions being defined by domain experts based on their knowledge or by the
necessity of using functions known to be non-metric like the Kullback–Leibler divergence
or the dynamic time warping distance [33].

In particular, this manuscript focus on methods that work on general metric spaces. How-
ever, please notice that metric access methods are a large family of methods; they can range
from those taking advantage of the precise representation of the data [29], to those working
over general metric spaces [11].

Now, let us discuss the relevance of metric indexing. While the Naïve solution is easy to
apply, i.e., exhaustively evaluate the entire collection to choose those items that satisfy the
query, the use of this solution in large collections of thousands or millions of objects may be
prohibitive. The metric space model is a well-studied mathematical framework for similarity
search that provides the tools to speed up searching for similar objects in a collection; the
standard procedure in the model is the creation of metric indexes, that is, data structures that
take advantage of the underlying metric properties to speed up the search task.

The applications range is vast, and it includes the direct application to content-based
information retrieval like those found in several multimedia search engines [32]; and a wide
range of application domains ranging from audio and speech classification and analysis,
matching of geometries and shapes, medical imaging, among others as mentioned in [33].

The curse of dimensionality (CoD), also known as concentration of measure, appears
in intrinsically high-dimensional datasets with a net effect of limiting the applicability of
indexingmethods. It has been studied and documented in several places, for example in Shaft
and Ramakrishnan [30], the authors prove that every index converges to exhaustive search
as the dimension increases. On the survey of Chavez et al. [11], they introduced a definition
for the dimension on metric spaces which was used and analyzed in Pestov [24–27] and in
Volnyansky and Pestov [37]. The survey of Hjaltason and Samet [16] focused on practical
index’s performance, and how data’s dimension affects it. Böhm et al. [2] showed some
very nice examples of how our intuition can lead to wrong assumptions in high-dimensional
spaces. It can be stated plainly as the practical impossibility to improve a sequential scan of
the database with an index for intrinsically high-dimensional data.

In some applications, it is possible to use an approximate or probabilistic approach. In those
methods, speed is traded for accuracy, and some errors are accepted as long as the answer can
be obtained quickly; the accuracy of these is commonly measured as the quotient between
the number of correctly retrieved objects and the number of requested nearest neighbors.
Probabilistic methods aim at giving correct solutions most of the time (some relevant answers
can be missed), while approximate solutions offer distance-based guarantees. For example,
in δ-dimensional spaces, it is possible to return an element within 1 + ε times the distance
to the true nearest neighbor in time O(δ(1 + 6δ/ε)δ log n) [1].
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1.1 Metric search problem

Let (X , d) be a metric space; here, X is the set of all valid objects (i.e., the universe), and d
a metric function. As a metric, for any u, v, w ∈ X , it has the following properties:

– Positivity, d(u, v) ≥ 0 and d(u, v) = 0 ⇐⇒ u = v.
– Symmetry, d(u, v) = d(v, u).
– Triangle inequality, d(u, w) + d(w, v) ≥ d(u, v).

We are interested in a finite subset S ofX (called the database). Given some query q ∈ X ,
the goal is to find elements in S near q . One proximity query of interest is range query; given
r ≥ 0, we seek for (q, r)d = {s ∈ S | d(s, q) ≤ r}. It is also useful for the notion of k nearest
neighbor (KNN) queries; given an integer k > 0, find k nearest elements of S to q . KNN
queries can be reduced to range queries using the optimal algorithm in [17]. This algorithm
finds the radius r such that the query ball (q, r)d only contains the nearest neighbor of q .

1.2 Contribution

This manuscript introduces the extreme pivots (EP), a technique that produces fast-and-small
exact indexes in practice, which also performs well-theoretically. We believe that EP is a step
forward in the search for efficient methods working on collections having millions of objects
and represented in high intrinsic dimensions. Our contribution provides a formal method to
obtain highly discriminant pivots with the assumption that we know the distribution of the
queries,which can be approximated in practice using a sample of the database. Please note that
this manuscript is an extended version of our previous work [28]; the newmaterial goes from
a revisited and extended state-of-the-art review, an in-depth analysis of the search cost, a new
construction algorithm that improves the previous one, alongwith a vast experimental section
performed with an improved methodology guided to show the statistical significance of
comparing our indexes and other related state-of-the-art methods. Moreover, this manuscript
includes an experimental analysis of the performance as a function of the database’s size and
also doubles the number of compared state-of-the-art methods.

1.3 Roadmap

This section introduces our contribution and also provides the necessary notation to follow
up the rest of the manuscript. Section 2 summarizes the related state-of-the-art, while Sect. 3
is devoted to describe and analyze the extreme pivot (EP) technique. In Sect. 4, a practical
implementation of EP based on pivot tables (called EPT) is presented. Section 5 gives an
extensive benchmarking of our indexes and state-of-the-art exact metric indexes. We tried to
compare our indexes under several setups of general interest. More precisely, we analyze the
performance as a function of the dimension, the size of the dataset, and the memory usage.
Finally, Sect. 7 concludes and summarizes our contribution.

2 Related work

The landscape of algorithms and discarding rules consists of a handful of key ideas; the
interested reader can find books and surveys devoted to reviewing the algorithmic differences
between indexes, for example, Chavez et al. [11], Samet [29] and Zezula et al. [39].
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There are two popular approaches to metric indexing, namely pivot-based indexes and
compact partitions. The pivot scheme consists in filtering the database S by using repeatedly
the triangle inequality to bound the distance from an object to the query. A set of distinguished
points P = {p1, p2, . . . , pm} ⊆ S (called the pivots) are used to define a filtering distance,
always bounded from above by the original distance d . Let D(u, v) = max1≤i≤m |d(u, pi )−
d(v, pi )|. Using the triangle inequality, it is immediate D(u, v) ≤ d(u, v), and hence it
implies (q, r)d ⊆ (q, r)D . All the points in (q, r)D are compared with q using d to get
(q, r)d . More details can be found in [11].

A compact partitioning method arranges the database in spatially coherent, nonoverlap-
ping regions.Most indexes of this kind are hierarchical, with a recursive rule as follows: A set
of centers c1, c2, . . . , cm ∈ S is selected per node such that every ci is the center of a subtree
Ti . The set of centers are used to partition the database such that each Ti is compact. (The
sum of all items to a central object is minimized.) For example, u ∈ S is linked to the subtree
Ti such that i = argmin1≤i≤m d(ci , u). The covering radius cov(ci ) = maxu∈Ti d(ci , u)

is stored for each node. This construction is recursively applied. In a similar way, a query
(q, r)d is solved recursively starting from the root node: If d(q, ci ) ≤ r then ci ∈ (q, r)d ,
and Ti must be explored if |d(q, ci ) − cov(ci )| ≤ r .

A popular complexity model has been the number of distance computations to answer a
query. The rationale behind this measure is that distances are themost expensive operations in
a query; however, an index optimized only to minimize the number of distance computations
may have a search time (seconds) similar to an exhaustive evaluation of the whole dataset.
This behavior is due to a combination of a simple distance function and an expensive indexing
structure.

AESA [36] computes all distances between the objects in the database and stores them in
a table. This method stores O(n2) distances, and hence, the construction cost is of the same
order. At query time, it performs a fixed number of distance computations for a database; it
is also necessary to compute a linear number of arithmetic and logical operations. A linear
restriction of the same idea is presented in LAESA [19], where a constant number of pivots
are used, independently of the size of the database.

The number of pivots needed to keep the searching cost at a fraction of the size of the
dataset depends on its intrinsic dimension. For searching methods, it is common to use the
dimension notion of Chavez et al. [11]; here, the authors show the convenience of using

ρ = μ2

2σ 2 as a definition for the intrinsic dimension where μ and σ are the mean and standard
deviation of the histogram of distances in the database, that is, ρ measures the concentra-
tion around the mean; more specifically, high-dimensional datasets have large μ values and
small variances. This definition allowed them to prove that any pivot-based metric index
requires at least a logarithmic (on the database size) number of pivots (randomly selected
from the database) where the base of the logarithm depends on the intrinsic dimension ρ

of the database. However, there is no universal way to measure the intrinsic dimensionality,
and it may be dependent on the particular task; for example, Mirylenka et al. [20] use fractal
dimension [35] to measure the complexity for classification problems.

As the intrinsic dimension increases, indexes need more pivots to remain competitive.
However, using too many pivots increase the complexity of the index, and may lead to
surpassing the cost of a sequential scan. Under this scheme, pivot selection is essential to
reduce both the memory costs and the number of computed distances.

In the following paragraphs, we describe a number of paradigmatic strategies that sum-
marize many of the available metric indexing approaches.
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Pivot Selection Strategies Even when a random pivot’s set is a good option for indexing,
it has been demonstrated that pivot selection improves the overall performance. Up to the
best of our knowledge, all pivot selection methods try to select good pivots for all the items
in the database. Bustos et al. [5] introduced some pivot selection strategies. In particular,
the authors propose an incremental selection strategy, which consists of taking a set of N
candidate pivots and select the best one, say p1. Then, from another set of N candidates,
select the one p2 that makes {p1, p2} the best set of pivots among the options. This procedure
is repeated until k pivots are selected. This technique needs to know in advance the proper
value of k.

The Sparse Spatial Selection (SSS) It is a pivot-based method by Pedreira et al. [23] that
automatically determines and selects the number of essential pivots to be used by a pivot
table. SSS depends on the intrinsic dimension of the dataset and not in its size. Let dmax be
the maximum distance between any two objects in the database. The algorithm starts with
an empty set and incrementally constructs the set of pivots as follows. An object becomes a
new pivot if its distance to other pivots is higher than or equal to εdmax for a fixed 0 < ε ≤ 1.
The goal is to choose the set of pivots to be well-distributed over space.

The Priority Vantage Points (KVP)Celik introduced the KVP in [6,7]; the author noticed that
disregarding the number of pivots available, only some of them (the good pivots) contribute
to the elimination of elements during a search. The author postulates that those pivots are the
ones that are either close or far from the query; and therefore, each point is visible only by
its k best pivots, and this parameter needs to be optimized. This strategy allows the KVP to
use less memory than other pivot-based methods.

The Spatial Approximation Tree (SAT) The SAT [21] is a metric tree that creates a compact
partition of the data. The root a (arbitrarily chosen) of the SAT is connected to its children
N (a), and the remaining elements of the database are assigned to the closest children of a.
This process is repeated recursively with each child and its assigned elements. The set N (a)

has the following two properties:

(i) for all u, v ∈ N (a), it follows that d(u, a) < d(u, v) and d(v, a) < d(u, v), i.e., all
items in N (a) are closer to a than each other.

(ii) for all w not in N (a), there exist z ∈ N (a) such that d(z, w) < d(z, a), i.e., all items not
in N (a) are closer to some item in N (a) rather than a.

For a given element c, multiple N (c) can be build. One way to do it is to take the closest
element to c, call it x , and put it into N (c). All the points closer to x than to c cannot be in
N (c) (second property) so they are discarded. From the remaining elements, take the closest
one to c and repeat until all the points not in N (c) are discarded. This construction of N (c)
produces the SAT. Another way to get N (c) is to take the farthest point y (instead of the
closest) and put it in N (c), from the points not discarded by y take the farthest and repeat.
The SAT produced in this way is called Distal SAT (DiSAT), recently described in [13].

Vantage Point Tree The VPT [38] is a binary tree where each element of the database is either
a node or a leaf. It is constructed recursively from a random point p as the root; then, the
median M is computed from remaining points, the points x such that d(p, x) < M go to the
left side and the rest go to the right, and then, M is stored. For the left and right branches,
the process is recursive until reaching a leaf with just one element. The search for elements
at distance r or less from q is done starting from the root p; if d(q, p)− r ≤ M , the left side
can be discarded; if d(q, p) + r < M , the right side will not contain an answer.
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The List of Clusters (LC) Chavez and Navarro [10] introduced it as a robust and efficient
memory index and works as follows. An element p is selected, and its m closer elements are
the cluster of p. Then, from the remaining elements, another point is chosen, and its cluster
is formed with the m closer elements. This procedure continues until there are no points left.
The covering radius is stored in each cluster and it is used to solve the queries, i.e., if a query
ball intersects with a cluster ball, then all elements in the cluster are checked to be part of the
answer. The LC needs linear memory and nearly quadratic construction time for the useful
combination of parameters.

Disk-based Indexes Prominent representatives of metric indexes working on the disk include
the M-tree of Ciaccia et al. [14], a dynamic disk-based metric index. It can be seen as
a compact partition index that takes similar decisions to B-Tree or R-Tree [15]. Skopal
introduced the PM-Tree in [31]. The PM-Tree is an M-Tree enriched with a set of pivots. It
significantly improves the search performance of the M-Tree, at the cost of extra complexity
on the pivot operations and additional memory to store distance values to pivots. Another
approach of secondary memory indexes is the M-Index (Novak and Batko [22]) which is a
compact partition index stored in a B+-Tree-like structure. The idea is that centers of regions
are assigned to integers, distant enough among them to store all items in each region. Then,
each item is encoded to an integer based on its nearest center. This strategy reminds that of
iDistance [18], which is designed for multidimensional data.

3 Extreme pivots

The EPT is an index based on pivots, but instead of finding ways of choosing good pivots, we
focus on populating the pivots only with points that are likely to be discarded with that pivot.
A pleasant consequence is that each pivot stores only a fraction of the database, reducing the
amount of memory needed, which allows the use of more pivots enhancing the performance
of the index.

In our previouswork [28],we found that it is possible to achieve better search performances
with low memory requirement if we paired each database’s object with a pivot either close
or far from it. In this contribution, we show a more in-depth analysis and also introduce a
new variant of the construction algorithm. Regarding experimental results, this manuscript
provides a more extensive experimental analysis including a set of statistical tests showing
that performances of our previous and our current methods are statistically different and that
the new one is significantly better for our benchmarking datasets. It is worth mentioning that
this idea had been received with optimism and at least two variants were published in [12,34]
which shows the potential of the technique and the need for a better understanding of the
basics which make it work.

3.1 A closer look at the pivot rule

Let P = {p1, p2, . . . , pk} be a set of pivots, the pivot distance is defined as
D(x, y) := max

i
‖d(x, pi ) − d(y, pi )‖ (1)

where i = 1, . . . , k. The distance D is a lower bound of the original distance d(x, y), i.e.,
D(x, y) ≤ d(x, y), and hence

(q, r)d ⊆ (q, r)D .
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Pivot-based methods use the pivot distance as a filter of the database: if a point is outside
(q, r)D , then it is outside (q, r)d , and hence it can be discarded during the search. Normally,
a linear scan of the database is done searching for the points that are not discarded. It is
possible to use a tree or a data structure like the spaghetti [8] to find (q, r)D in O(R log(n))

with R the size of (q, r)D . The goal of a pivot selection algorithm is to reduce R to the size
of (q, r)d . For an analytical study of pivot tables, please refer to [11].

A closer look at the definition of the pivot distance is revealing. Since the maximum
value over all pivots is used, then just one pivot contributes to decide that an element can be
discarded. In other words, for every item in the database, only one pivot (that depends on the
query) is responsible for filtering. With this observation in mind, it makes sense that for each
element of the database, we seek for the pivot, increasing the chance of filtering the element
for any given query. In this work, we follow this approach, and we propose a new technique
which is described below.

In a pivot table each pivot covers the entire database; in other words, all the distances to
the database objects are stored per pivot. From the observation above, we anticipate that each
pivot serves only a few objects and most of the distances are idle, without being used which
leads to an inefficient usage of the memory and a low probability that the index occupies a
place in faster memory (e.g., RAM or the processor’s cache). The latter perspective implies
slow searches.

3.2 The extreme approach

Instead of finding the best set of pivots P, the extreme pivots (EP) approach tries to associate
each item u to a good (maybe the best) available pivot piv(u) for that object. As was pointed
out before, the more distant pivot from mean is used to discard the elements, thus for each
u ∈ S, EP will try to select the pivot piv(u) = p such that

|d(u,piv(u)) − d(q,piv(u))| is maximized.

During construction time,we know (u,piv(u)), but sincewe do not have access to the queries,
we cannot know exactly d(q,piv(u)), so the best thing we can do is estimate it. Assuming
that q follows the same distribution of the data, d(q, p) is on average μp of the distances
from the pivot p to every object. That is, |d(u, p) − μp| is maximized when u and p are
either close or far from each other. Note that other pivot selection strategy can benefit from
EP since we are assigning to each object the pivot most likely to discard it.

A formal definition of the above intuition follows. A Pivot Group (PG) P is a subset of S,
and its elements are called pivots. Every p ∈ P has a set A(p) ⊂ S called the associates of
p with the following properties:

– Every x ∈ A(p) is such that |μp − d(p, x)| is maximum for all pivots in P where μp is
the expected value of d(u, p) for all u ∈ S. Ties are broken arbitrarily.

– ∪p∈PA(p) = S.
– A(pi ) ∩ A(p j ) = ∅ for i = j for i, j = 1, . . . , k.

In order to have a mental picture and a better understanding of this process, note that
the associated sets define a partition of S which induces an equivalence relation. As the
number of pivots increases also does the number of equivalence classes. A bigger number of
equivalence classes imply a smaller number of elements contained in each one of them.

Figure 1 illustrates the central idea of EP and its differences with other pivot-based
approaches. In EP, each item u is associated with a single pivot piv(u), and as was men-
tioned before, d(u,piv(u)) is apart from the mean μ of the distances from piv(u) to all
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(a) An Extreme Pivot. From the perspective of
the pivot p, the ranges [0, μ−α] and [μ+α, ∞)
are populated with items from the datasets, the
interior range is empty.

(b) The behavior of other pivot tables. Each
pivot sees the entire dataset no matter which
pivot selection strategy is used.

Fig. 1 Solving (q, r) with EP and other pivot tables; here, μ is the expected value of each random variable pi
(pivot) and α is a exclusion threshold of EP

elements in S. So, we can say that |d(u,piv(u)) − μ| ≥ α for some value α; therefore,
α defines an exclusion threshold around the mean μ for EP. Consider the query (q, r), the
expected value of d(q,piv(u)) will be close to μ (see Fig. 1a). Since d(u,piv(u)) will be far
from μ, the intersection of the query ball and the intervals containing elements associated
with piv(u) will be small.

Different from EP, in the other pivot-based approaches (no matter the pivot selection
technique), each pivot has a full view of the dataset (see Fig. 1b). Since we consider that
queries follow the same distribution, d(q, p) is close to the mean for most pivots. Therefore,
a pivot table needs to contain a pivot with a low populated range, i.e., far from the mean,
for each possible query to improve its filtering capabilities. For that reason, usually, a large
pivot set is needed. However, note that the pivot table needs O(kn) memory where k is the
number of pivots. Nonetheless, a large pivot set increase the search time since intersection’s
cost of the ranges is proportional to k in the worst case.

As other pivot-based techniques, in EP, the number of pivots can be large, depending
on the dimensionality and size of the dataset. Nevertheless, due to the mentioned selection,
each object in the database is covered by exactly one pivot, and hence it uses O(n) machine
words, i.e., it is equivalent to a single pivot in a pivot table. The discarding power of EP can
be improved using several independent pivot groups; therefore, elements are covered with
more than one pivot. In this work, we propose a simple implementation of several PG using
tables (EPT). We will describe it in detail in Sect. 4.

3.3 Bounding parameters in PG

We know that each pivot has its best-associated elements. For simplicity, let us suppose that
all pivots follow an identical distribution. Therefore, let a be the probability of the event in
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which an element is associated with a given pivot, that is, the points in A(p) are either close
or far from p. We can assume that for every u ∈ A(p), we have that |d(p, u) − μp| > α for
every pivot p.

We present a relation between a and α in the next theorem. Notice how a is closely related
to the expected query set.

Theorem 1 Let X be the random variable describing the distance between a pivot p and
an indexed item u associated with p, i.e., X(u) ∼ d(u, p); then, the probability of u being

associated with p is a = Pr(u ∈ A(p)) <
σ 2
X

α2 , where σ 2
X is the variance of X and α the

exclusion threshold around the mean μX .

Proof Using the Chebyshev’s inequality,1 Pr(|X −μX | > α) is upper bounded by
σ 2
X

α2 . Since
|d(p, u) − μp| > α for every u ∈ A(p), we have

a = Pr(u ∈ A(p)) < Pr(|d(p, u) − μp| > α)

= Pr(|X − μX | > α)

and then a <
σ 2
X

α2 . The proof is complete. ��

This theorem shows that for a given X (fixed by the dataset and query), we can adjust a
to obtain the necessary α such that associated items escape from the zone around the mean
from their pivot’s point of view. However, highly concentrated distributions produce small
values for a (large α, Fig. 1a); then, many pivots are needed. Notice that a high number of
pivots do not produce memory problems in EP, yet it may increase the index’s search cost.
Based on Theorem 1, the number of necessary pivots m is lower bounded as:

m >
α2

σ 2
X

, since m = 1/a. (2)

Please note that m could be independent of n, yet dependent on the data and query set
distribution. This bound of m is highly informative, yet it does not provide a proper method
to upper bound m. In the next section, we introduce the EP Table (EPT), a practical imple-
mentation of EP. The construction of EPT is not based on computing the value of m directly;
it tries to optimize online the expected search cost as a function of m (detailed below). This
scheme is just a possible shift in the discussion given above.

4 Extreme pivot table

Pivot Groups can be used to construct independent indexes; the intersection of all the inde-
pendent outputs defines the final set of candidates. Each pivot in a group can only be used
to discard its associates. For simplicity, we handle the index as a table, although sublinear
implementations for pivots are available. An Extreme Pivot Table (EPT) is a collection of �

pivot groups. Note that each point has � associate sets; this corresponds to each point having
� pivots. So, when we talk about m pivots, we refer to m pivots per PG, and when we say �

pivots, we mean pivots per point of the database.

1 For a random variable Z with mean μZ and variance σ 2
Z , Pr(|Z − μZ | > ε) < σ 2

Z /ε2.
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4.1 Data structure and search algorithm

An EPT is composed of � PG’s. Each PG is a list of tuples (piv(u), d(u,piv(u)). More
precisely, we have the following matrix:

T =
⎡
⎢⎣

(P1,1, D1,1) . . . (P1,n, D1,n)
...

(P�,1, D�,1) . . . (P�,n, D�,n)

⎤
⎥⎦

where Pi, j stores pivi (u j ) and Di, j stores d(u j ,pivi (u j )). Since each Pivot Group (row)
is independent, piv should be parameterized with the PG identifier to properly distinguish
among the available pivot groups.

The other typical pivot tables store T just using D. So, EPT will use log(m)+ 1 extra bits
per item which are non-significant for most applications as the number of pivots m is fixed
for a fixed data and query set. Notice that m can be fixed as the maximum m among all the
pivot groups without significant memory waste.

Once T is constructed, a query (q, r) is solved using Algorithm 1. Every point in the
database is tested if one of its � pivots can discard it using the pivot rule; if it cannot be
discarded, a direct comparison with the query is made to see if it is part of the result. A k-nn
query is solved similarly, yet using min-priority queues of maximum size k, which means
that the furthest item will be discarded whenever a closer object is found. To solve k-nn
queries, Algorithm 1 replaces r by the currently known covering radius cov of the result set.
Formally, cov(R) is evaluated to the furthest distant in R if |R| ≥ k and ∞ otherwise. To
make this algorithm’s transformation clearer, we append the pair distance value and object
to the result set (line 14). This way, R looks like a priority queue.

Algorithm 1 The search algorithm for the EP Table
Input: The database S, a query (q, r), and the EP Table T of size � × n with d(u,pivi (u)) for 1 ≤ i ≤ �

and every u ∈ S
Output: The result set R
1: Let R be an empty set
2: Let H : S → R be a sparse table implemented with a dictionary to cache pivot’s distances to q, i.e.,

H(p) = d(p, q). For the sake of simplicity, if H(p) is not cached, then it is computed and stored in H(p).

3: for u ∈ S do
4: Let review be true.
5: for i = 1 to � do
6: if |H(pivi (u)) − d(u,pivi (u))| > r then
7: Set review to false.
8: break for
9: end if
10: end for
11: if review then
12: Let d∗ = d(u, q)

13: if d∗ ≤ r then
14: R ← R ∪ {(d∗, u)}
15: end if
16: end if
17: end for
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4.2 Probability of discarding

Given a query (q, r), the probability that an element u is not discarded by � pivots is

Pr(|d(q, p1) − d(u, p1)| ≤ r , . . . , |d(q, p�) − d(u, p�)| ≤ r).

To simplify the analysis, we assume all objects to be described by independent identically
distributed random variables (i.i.d.r.v). Therefore, the previous expression is rewritten as
follows:

Pr(|d(q, p) − d(u, p)| ≤ r)�.

In order to predict the above probability, we will use the distribution of distances from
the pivots to all the database elements. First, we will see the probability that a pivot would
discard one of its associates.

For pivot p, let X be the random variable such that X(u) ∼ d(u, p) if u ∈ A(p) and
X(u) ∼ 0 otherwise, that is because p only has information for A(p). Similarly, let Y be
the random variable such that Y (q) ∼ d(p, q). The variable Y will represent the distribution
of q . Typically, X and Y have a normal distribution so, let us assume they are distributed
normally with mean μ, E[X ] = E[Y ] = μ. We divide the domain of their histograms into
intervals of length r . Let Ii be the interval [ir , (i + 1)r) for i ∈ N. We are going to associate
an element u with the distance d(p, u) and say that an element u is in Ii if d(p, u) ∈ Ii .
It is convenient to express the mean in terms of the searching radius. It is safe to assume
μ > r because otherwise the query is not selective at all and the entire database would be
the answer to the query. Let μ = rc with c > 0.

Pr(|d(q, p) − d(u, p)| > r) = Pr(u is discarded)

=
K∑
i=0

Pr(u is discarded|q ∈ Ii )Pr(q ∈ Ii )

+Pr(u is discarded|q ∈ [(K + 1)r ,∞)Pr (q ∈ [(K + 1)r ,∞)) for every K ∈ N.

Remember that the distance from any u in A(p) toμ is bigger than α, we will also assume
that μ − α = br for some b > 0. In other words, the covering radius of each object is
expressed in terms of b times r .

Pr(u is discarded) = 2
c−1∑
i=0

Pr(u is discarded|q ∈ Ii )Pr(q ∈ Ii )

= 2
b∑

i=0

Pr(u is discarded|q ∈ Ii )Pr(q ∈ Ii )

+ 2
c−1∑

i=b+1

Pr(u is discarded|q ∈ Ii )Pr(q ∈ Ii ).

Note that Pr(u is discarded|q ∈ Ii ) = 1 when q is in [b(r + 1), μ], so

Pr(u is discarded) ≥ 2

(
1

2
+

∫ μ−α−3r

0
fX (x)dx

) ∫ μ−α+r

0
fY (x)dx

+ 2
∫ μ

μ−α+r
fY (x)dx
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Let us see an example of applying the last inequality. In this assumption, Y distributes
normally, so the values of the above integrals can be found in the literature. Let σ 2

Y be its
variance, and α = σY + r . We have

Pr(u is discarded) ≥ 2

(
1

2
+

∫ μ−σY−4r

0
fX (x)dx

)
(0.16) + 2(0.34)

≥ 2

(
1

2

)
(0.16) + 2(0.34) = 0.84

With the last parameters, we have a probability of discarding bigger than 0.84.2

An insightful analysis. The discarding problem can also be stated in a less precise but more
insightful way as follows:

Pr(|d(p, u) − d(p, q)| > r) = Pr(|X − Y | > r)

then, using the Chebyshev’s inequality, we have

Pr(|X − Y | > r) < (σ 2
X + σ 2

Y )/r2.

The probability that a given u would not be discarded by its covering pivot piv(u) is

1 − Pr(|X − Y | > r) ≥ 1 − (σ 2
X + σ 2

Y )/r2.

This expression directly relates the distribution of the dataset, the pivots as are seen by
its associated pivots, and the query set. Recall that we can always adjust σ 2

X increasing or
decreasing α; which is also linked to the number of extreme pivots, as it is detailed below.

4.3 Search cost

The ultimate measure for efficiency is the search cost. In a first approach, we use the model
of complexity where only the number of distance computations is counted. We discuss later
the side computations since, in our approach, we canmaintain them small (sublinear) as well.

Let s be the probability that an element u is not discarded. Then, the algorithm computes
the following distances.

cost = m� + ns�, (3)

for a database of size n, where m is the number of pivots in the PG and � the number of
groups. Notice that the number of groups corresponds with the number of extreme pivots
seen per item, so, at this point, it is correct to say that each item is associated with � pivots.
Since m is fixed for a given dataset (Expression 2), we focus on determining �. We have

∂cost

∂�
= m + ns� ln(s)

then

m + ns� ln(s) = 0

�
 = lnm/n − ln ln (1/s)

ln (s)
. (4)

2 The precise values 0.16 and 0.34 can be numerically computed or retrieved in traditional pre-computed
tables for the normal distribution.
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Using this optimal �, we can compute the minimum cost

cost
 = m�
 + ns�


= m ln(mn ) − m ln ln 1/s

ln s
+ ns

ln m
n −ln ln 1/s

ln s

= m ln(mn ) − m ln ln 1/s

ln s
+ n

( −m

n ln s

)

= m ln(mn ) − m ln ln 1/s − m

ln s

cost
 = m
(
ln n

m + ln ln (1/s) + 1
)

ln (1/s)
(5)

= m log1/s
n

m
+ o(m ln (1/s)). (6)

This expression is related to the cost obtained by Chavez et al. [11] for randomly selected
pivots, i.e.,

cost ≥ (ln n + ln ln (1/t))/ ln (1/t), (7)

with t = 1 − 2σ 2
Y /r2. This expression gets an optimal number of pivots,

k
 = ln n + ln ln(1/t)

ln(1/t)
(8)

= log1/t n + o(ln(1/t)). (9)

The equations looks similar; however, themain difference is that the search cost of random
pivots (in Chavez et al. [11]) depends on the database and the query radius, and hence the
only way to improve the search cost is by increasing the number of pivots. On the other hand,
the cost of extreme pivots also depends on σX , adjusted through α, a parameter that helps
to adapt the index to the database and a set of queries of interest. Please remember that the
variance σ 2

X = E[(d(u, p)−μp)
2], and by construction |d(u, p)−μp| ≥ α, thus σ 2

X ≥ α2;
see Sect. 4.2 for details. Therefore, we have the chance to make adjustments to get better
results on average, by knowing how the database is distributed. In our cost equation, we also
can set the � and m parameters (m depends on α) at construction time. Notice that � controls
the amount of memory needed by the index, and m the discarding probability.

The index will have a better performance with higher values of � at the cost of memory
usage, regarding distance evaluations.A largem increases the probability of a pivot discarding
a given element, without increasing the index size. With m also increases the number of
distances computed between the pivots and the query (m × �), and therefore, we need to
adjust m accurately; each dataset has optimal values for these parameters, and they must
be found or approximate to take advantage of extreme pivots. In the rest of this section, we
aboard the problem of adapting an EPT to a given dataset.

4.4 Construction algorithms

Now, we show two algorithms creating EPT indexes. The first algorithm corresponds to a first
approximation presented in [28]. It is convenient and correct, but it uses an extra parameter
0 < β ≤ 1 to overcome practical issues with the estimation of the needed statistics. The
second one (Algorithm 3) is part of the contribution of this manuscript and replaces β for
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a more intuitive and self-explained parameter, window. The central idea of window is to
provide a way to optimize the average performance.

The number of pivot groups and pivots per group, m and �, can be optimized using the
model and the analysis described above. The optimalα is achievedmaximizing the probability
of discarding an object u, which is approximated by 1−(σ 2

X +σ 2
Y )/r2. Using this expression,

we observe that σX =
√
r2 − σ 2

Y ≥ α. For high intrinsic-dimensional datasets, σX becomes
high; therefore, it can become useless for searching since the tightly linkedm is a major term
in the search cost. In this case, a suboptimal α can be used, and the overall performance could
be improved just increasing the number of pivot groups. The same strategy is useful when
the computation of the distance function is too expensive.

The total amount of memory used can be set by fixing �. Once fixed, we can approximate
the optimalm numerically. For this purpose, we use Eq. 3 as detailed inAlgorithm 2.Here, the
idea is to increment m by one at each step, and stop whenever the derivative of Expression 3
becomes zero or positive. We need to apply the above procedure � times since it only creates
a single group.

Algorithm 2 Numerically optimized construction of the EP Table; here, β controls the
variance.
Input: The input database S = {u1, u2, · · · , un}, and the number of groups �.
Output:The set of pivots P , and the array g of n tuples (piv(u), d(u,piv(u))) ∀u ∈ S.
1: Estimate σ 2

Y and r2.
2: Select a random pivot p1, P ← P ∪ {p1}
3: Initialize g[1, n] = (p1, d(u1, p1)), (p1, d(u2, p1)), · · · , (p1, d(un , p1))
4: Define β = 0.8
5: Let m ← 1
6: Let prev = m� + n(1 − β(σ 2

X + σ 2
Y )/r2)�

7: while True do
8: m ← m + 1
9: Select pm randomly from S, P ← P ∪ {pm }
10: for j = 1 to n do
11: g[ j] ← (pm , d(u j , pm )) if |d(u j , pm ) − μ| > |d(u j ,piv(u j )) − μ|
12: end for
13: Update σ 2

X with the current tuples in g

14: cost ← m� + n
(
1 − β(σ 2

X + σ 2
Y )/r2

)�
.

15: if cost ≥ prev then
16: stop loop
17: end if
18: prev ← cost
19: end while

It is important to notice that this procedure depends on the estimated values of σ 2
Y and r2.

Also, for real-world databases, the i.i.d.r.v. assumption can be far from true. In a preliminary
version of this paper [28], we introduced a constant β ≤ 1 to compute the discarding proba-
bility in lines 6 and 14. The precise value of β depends on how much both the database and
the query set differ from the i.i.d.r.v. assumption.

In this paper, we introduce a new construction algorithm, not based on β. We use a more
explicit manipulation of the data variance. The central idea is to consider the cost function as a
noisy signal that should be smoothed. So, instead of doing an explicit modification of the cost
like β, in this manuscript, we use the average ofwindow evaluations. Algorithm 3 shows the
new construction algorithm. Any valuewindow > 1 will produce a smoother signal (line 5),
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Algorithm 3 Numerically optimized construction of the EP Table using signal processing
ideas to handle the variance of the data.
Input: The input database S = {u1, u2, · · · , un}, and the number of groups �, the window size
Output:The set of pivots P , and the array g of n tuples (piv(u), d(u,piv(u))) ∀u ∈ S.
1: Estimate σ 2

Y and r2

2: Let prev ← n, and m ← 0
3: while True do
4: cost ← 0
5: for 1 to window do
6: m ← m + 1
7: Select pm randomly from S, P ← P ∪ {pm }
8: if m = 1 then
9: g[1, n] ← (p1, d(u1, p1)), (p1, d(u2, p1)), · · · , (p1, d(un , p1))
10: else
11: for j = 1 to n do
12: g[ j] = (pm , d(u j , pm )) if |d(u j , pm ) − μ| > |d(u j ,piv(u j )) − μ|
13: end for
14: end if
15: Update σ 2

X with the current tuples in g

16: cost ← cost + m� + n
(
1 − (σ 2

X + σ 2
Y )/r2

)�

17: end for
18: if cost/window − prev ≥ 0 then
19: stop loop
20: end if
21: prev ← cost/window
22: end while

but values from 4 to 32 works well for all our datasets (see Sect. 5.1). Notice that this strategy
can add window × � unnecessary pivots, which can be a problem if window × � is large
(thousands); this effect will not appear when window is small. Without loss of generality,
the algorithm assumes that database length is a multiple of window.

5 Performance

The definitive test for a metric index is the comparison against state-of-the-art indexes in
a standard testbed. The rest of this section is dedicated to perform an extensive empirical
analysis using real-world and artificial datasets commonly used in the literature, described
below.

– Nasa This database is a collection of 40, 150 vectors of 20 coordinates obtained from the
SISAP project (http://www.sisap.org). It uses L2 as distance function. A single search is
completed on 0.014s.

– Colors The second benchmark is a set of 112,682 color histograms (112-dimensional
vectors) from SISAP, under the L2 distance. Each query needs 0.165s to be solved.

– Gutenberg It is a dictionary of 2,178,587 words extracted from the Gutenberg
project (http://www.gutenberg.org). Several languages were considered and mixed. The
Levenshtein’s distance was used to measure the proximity between objects. Exhaustive
verification of all items in the dictionary needs close 16.245s to solve a single query.

– CoPhIR-1M A one million subset of the Cophir dataset [3]. Each object is a 208-
dimensional vector where each coordinate is a small integer, and it uses L1 as distance.
Each query needs 2.052s to be completed.
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– RVECWe generated random vectors in the unitary cube, in four dimensions 8, 12, 16, and
20, each one with one million unique items. Also, to study the effect of the database’s
length,we createfivedatasets, of dimension sixteen, containing105, 3×105, 106, 3×106,
and 107 items, respectively. Each database is dubbed as RVEC-{8, 12, 16, 20} for the one
million case, and RVEC-16-SIZE, for the variable length dataset. We used the L2 distance
with the RVEC dataset.

Table 1 lists the characteristics of each benchmark. It shows the intrinsic dimension com-
puted as ρ = μ2/2σ 2, as described in [11]. Other characteristics are listed like themaximum,
the mean, and the standard deviation of the distance function distribution. Notice how syn-
thetic RVEC characteristics are smoothly varying with respect to the intrinsic dimensionality
and how the same characteristics are quite different in real-world datasets. These different
values encourage testing in both synthetic and real datasets since synthetic ones are easy to
extrapolate but unrealistic, while any result on real ones is too dependent on the database
itself.

Notice that our study is placed in a general metric space model, that is, every search
method uses the distance as a black box; in other words, the methods cannot take advantage
of the underlying structure of the objects. This restriction allows for supporting any metric
distance function and enables the creation of generic search methods without taking care of
a particular application domain.

Each plot represents an average of 30 independent builds of every index. In each index,
we report an average of 256 nearest neighbor queries. Query objects were not indexed. In
the Gutenberg case, the query set consists of 512 words randomly selected from the dataset
inserting, deleting, or replacing a unique character at a random position. This edit operation
ensures that a neighbor exists at a distance 1 and that it is not part of the original dataset.

We used several canonical and state-of-the-art metric indexes as the baseline for the
comparison. We avoid the comparison of secondary memory indexes since our index is
designed for RAM. The list of methods compared in our experimental section is:

1. Our EPT and EPT* indexes.
2. The Sequential or exhaustive scan to bound the searching time when the dimension is

large.
3. The LAESA, the standard pivot table. We allow it to vary the number of pivots, which

impacts directly in memory usage.
4. A third baseline is the incremental selection of pivots by [5] (dubbed as BNC).
5. The Spatial Selection of Sparse Pivots (SSS) of [23].
6. The K Vantage Pivots (KVP) by [7].
7. The List of Clusters (LC) [10]. It holds excellent search times using the right setup when

compared with indexes using the same amount of memory. Since LC cannot improve
adding more memory, we select the best setup among a list of bucket sizes (detailed by
each experiment). The search speed of LC is paid with a costly construction step.

8. The SAT and the Distal SAT (DiSAT) [13,21]. Both methods are parameterless metric
indexes.

9. The VPT [38], a well-known parameterless index.

We report two versions of the EPT construction algorithm. The figures labeled these
indexes as EPT and EPT*, respectively, for Algorithms 2 and 3. Since both are the same
index with two different optimizing algorithms, we name both as EPT whenever the context
allows. We provide statistical tests to prove that both algorithms produce different indexes.

For the majority of our experiments, the indexes use the following set of parameters.
EPT* and EPT use � = 2, 4, 8, 16, and 32 groups; BNC and LAESA use 2, 4, 8, 16, 32,
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and 64 pivots. SSS uses ε = 0.3, 0.4, and 0.5 with a maximum of 512 pivots. (The
precise number of pivots depends on ε and the properties of the database.) KVP uses
k = 2, 4, 8, 16, and 32 selected from 1024 pivots. LC uses the best setup selected among
n/m = 1024, 512, 256, 128, and 64. SAT, DiSAT, and VPT are not affected by parameters.

Our construction algorithms need to estimate the query set statistics. So, we assume
that queries have the same distribution as that of the objects; this is a fair assumption. We
emphasize that the actual query set is unknown by the optimization process of the index.
Please notice that our indexes will always retrieve the correct answers, but in the case of
having the actual distribution of the query set, our indexes can be better tuned.

We provide an open source implementation of all presented algorithms in C# in the natix
library.3 All experiments were executed in a 32× Intel Xeon 2.60GHz workstation with
64GiB of RAM, running Linux / CentOS 6.6 without exploiting the multicore architecture
for search experiments.

The search performance is the average of 30 independent runs over each query set to
reduce the variation found due to stochastic decisions in several algorithms. Also, these 30
runs are used to compute statistical significance among indexes. Finally, we report the search
performance with two unitless measures, more precisely, the search cost and the speedup.
The first one is the average number of distances evaluated to solve a query normalized with
the number of items in the dataset, that is,

search cost = number of distance evaluations

the size of the dataset
. (10)

The second score measures the relative improvement, regarding clock time, as compared
with the sequential search, which is formulated as follows:

speedup = search time needed by the sequential scan

search time spent by the index
. (11)

Note that search time is measured in clock time (seconds). Finally, since our comparison
includes indexes having different parameters, we parameterize the performance with the
index’s memory, which is an image of how these parameters impact the index’s complexity.
This test gives us a precise idea of how much resources are needed to reach the expected
performance.

5.1 About the parameter selection of EPT

A finely optimized index often comes at the cost of memory or construction time. EPT
indexes have few parameters. We start our discussion with �, that is, the number of groups
in the structure which controls the memory requirements.

As detailed in Sect. 4.3, � controls the discarding power; however, choosing a large �

(more than 16), seriously affects the search speed since the complexity of the index becomes
meaningful. The reason is that the speed function depends on both the time needed for the
index to find the set of candidates and the direct comparison of the resulting set. Being aware
of the real cost of the index is far more complicated than just focusing on the reduction in
the number of evaluated distances; however, it cannot be ignored for applications. In the rest

3 https://github.com/sadit/natix/.
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of this experimental section, we describe the effect of � in the performance of EPT. As a
rule of thumb, low-cost distances should use a few groups to keep the cost of the index low;
expensive distances benefit more from large � values since the distance functions dominate
the search speed of the index.

Once the desired memory is specified, the precision of the optimizing procedure can be
seen as a parameter; we created different strategies for EPT and EPT*. When the EPT was
presented in [28], a parameter called β was used. Due to space restrictions, in that seminal
paper, it was used β = 0.8 without giving details about this selection. The reason of fixing
β to 0.8 is depicted in Table 2. Notice how the β is dependent on the particular dataset, but
setups are better than using β = 1.0 for almost any case, so letting a smaller value works. In
particular, 0.8 is better in themajority of our benchmarks. In any case, notice how the variance
is relatively low, that is, the reason to fix β = 0.8 in [28] and the rest of this document.

In this work, we introduce the EPT* having window as an optimizing parameter. The
proper value ofwindow should be computed taking into account thatwindow×� extra dis-
tances will be evaluated at each search. Table 3 illustrates the effect of window in EPT*. We
can see how largewindow values show better search times until the internal cost becomes too
large, and then the search speed decreases. Notice that the bad effects of large window are
less noticeable in massive datasets than in smaller ones because �×window/n remains rela-
tively low. However, depending on the dataset, the construction time could be more extensive
because our construction algorithm converges slower aswindow increases (Algorithm 3). As
in the EPT, we encourage simplicity, so we fix window = 16 for the rest of the manuscript.
This simplification adds 16� distance evaluations in the worst case.

Table 2 Effect of the β parameter for EPT � = 4 on five benchmarks

β Speedup S. Cost β Speedup S. Cost β Speedup S. Cost

Colors Nasa CoPhIR

0.6 7.09 0.0563 0.6 2.17 0.1148 0.6 5.97 0.1771

0.7 7.27 0.0530 0.7 2.11 0.1195 0.7 5.92 0.1788

0.8 7.30 0.0595 0.8 2.24 0.1265 0.8 5.09 0.1809

0.9 6.84 0.0566 0.9 2.01 0.1268 0.9 5.71 0.1856

1.0 7.15 0.0555 1.0 2.06 0.1188 1.0 5.78 0.1833

β Speedup S. Cost β Speedup S. Cost

Gutenberg RVEC-16-1M

0.6 16.80 0.0154 0.6 2.09 0.0350

0.7 16.54 0.0154 0.7 2.22 0.0412

0.8 17.01 0.0152 0.8 2.35 0.0370

0.9 16.16 0.0158 0.9 2.26 0.0336

1.0 16.69 0.0152 1.0 2.20 0.0365

Search Cost and Speedup are defined in Eqs. 10 and 11, respectively. Best rows in terms of speedup are marked
in bold
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Table 3 Performance of EPT as a function of window

Window Speedup Search time (s) Construction time (s) � × window

� = 4

1 5.82 0.0846 4.1299 4

2 6.79 0.0634 8.5356 8

4 8.17 0.0495 15.1299 16

8 8.50 0.0453 25.2799 32

16 8.75 0.0448 30.5726 64

32 9.01 0.0451 156.2616 128

64 9.00 0.0446 167.8938 256

128 8.81 0.0491 162.5611 512

256 8.10 0.0588 203.8279 1024

� = 8

1 6.40 0.0562 7.6865 8

2 7.06 0.0514 22.2632 16

4 7.99 0.0399 42.6136 32

8 8.25 0.0396 54.0796 64

16 8.14 0.0404 54.1276 128

32 8.53 0.0389 87.4186 256

64 8.76 0.0424 129.9261 512

128 8.33 0.0485 151.6394 1024

256 7.39 0.0649 169.3116 2048

� = 16

1 6.18 0.0417 11.9085 16

2 6.10 0.0387 3.7159 32

4 6.50 0.0369 30.8376 64

8 7.43 0.0339 50.9435 128

16 7.93 0.0320 69.8743 256

32 7.51 0.0335 81.7329 512

64 7.68 0.0379 81.5890 1024

128 7.30 0.0544 125.1052 2048

256 5.91 0.0834 139.4746 4096

Other datasets have a similar general behavior
Bold results are the best

5.2 The effect of the dimension on the search performance

Figure 2 compares the performance of the methods when the dimension increases, fixing the
size of the dataset. For this experiment, we use synthetic vectors, having one million items
per database. We dedicated a pair of figures for each dimension. The set of figures show the
search cost (left) and speedup (right) comparisons; the search cost is measured as the number
of evaluations of the distance function normalized with the size of the database. In both
figures, the horizontal axis is the memory usage of the index. Each index and its configuration
determine the memory footprint; these configurations are detailed at the beginning of Sect. 5.
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(a) RVEC-8

(b)RVEC-12

(c)RVEC-16

(d)RVEC-20

Fig. 2 Search performance comparison for datasets with different dimensions; each dataset contains one
million objects. Lower values are better for search cost (left side), while higher are better for speedup (right
side)
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The leftist column of figures illustrates how the search cost is increasedwith the dimension
from almost free searches in low dimensions to close to an exhaustive evaluation of the dataset
in higher dimensions. These figures also show how increasing memory (adding pivots) is an
effective way to reduce the number of evaluations of the distance function. Nonetheless, the
real effect of reducing the number of evaluations is the impact on the speedup (right column
of figures); the real searching time is increased as the index becomes complex, that is, it
incorporates larger machinery to discard objects it produces slower indexes as a net effect.
This effect is easy to see on pivot indexes with a large number of pivots as SSS.

Figure 2a compares indexes for the eight-dimensional benchmark. In the left, we can
observe that almost any index has a low cost, except for LAESA and BNC in their low
memory configurations. Regarding speedup, the best performing is the LC, followed by other
small indexes like VPT and DiSAT. After these indexes, the pivot-based methods appear in
the rank; the better pivot methods are EPT* and EPT. Figure 2b shows the comparison among
searching methods for the 12-dimensional dataset. On the search cost, it is possible to see a
small increase in the cost; here, we can see that EPT* and EPT are more or less robust to the
increase in the dimension since they remain low in the search cost and high in the speedup.
The best indexes are those generated by LC; please notice that VPT and DiSAT begin to
degrade its performance.

Figure 2c shows the performance comparison for the 16-dimension benchmark. Here, the
search cost is significantly higher than that of RVEC-8 and RVEC-12. LC remains to have
an excellent performance, but it is clear that EPT* and EPT are catching up, yet using more
memory. The VPT and DiSAT are left behind for pivot-based indexes. Regarding speedup,
LC remains as the best index but EPT*, EPT and KVP are now the best pivot-based indexes
and are competitive with LC’s speed up. Other indexes are below the exhaustive search time.
However, please recall that the distance evaluation of 16-dimensional distances is pretty fast
and that real-world datasets have higher cost distance evaluations.

The comparison for our 20-dimensional benchmark is shown in Fig. 2d; it is notorious
that most indexes have a poor performance in terms of search cost (left). The EPT*, EPT,
KVP, and LC perform the better in both search cost and speedup. Nonetheless, from the
dynamic of these experiments, it is possible to see that all these indexes and others based on
the same framework degrade its net performance as the dimension increases. The effect can
be reduced using sophisticated techniques like the EPT family of indexes, but all of them are
negatively affected by the dimension increases.

One important aspect of EPT is that it is easy to configure and has a small construction time
as compared with LC (see Table 6). The LC needs an expensive and handcrafted optimization
while having a quadratic construction time. Moreover, after reaching the optimum, the LC
cannot be improved further by using more memory, while our proposal can use as much
memory as it fits in the system’s RAM.

5.2.1 Statistical significance of the comparison

Table 4 shows the p values of the statistical test applied to the achieved speedups on RVEC-
1M benchmarks, for different dimensions. Each configuration was evaluated 30 times. The
table shows the p values of six indexes; among the six methods, we selected our contribution
EPT* and EPT to prove that Algorithms 2 and 3 are different; we also included KVP since
it also selects near and far pivots to create a sparse pivot table, as EPT can be seen; LC is
also considered since its excellent performance and simplicity. Similarly, VPT and DiSAT
are also included due to its simplicity and performance.
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Table 4 Statistical hypothesis tests for speedup performance on varying dimension

EPT* EPT KVP LC DiSAT VPT EPT* EPT KVP LC DiSAT VPT

(a) RVEC-8 (b) RVEC-12

EPT* 1.0 0.0 0.0 0.0 0.0 0.0 EPT* 1.0 0.0 0.0 0.0 0.34 0.0

EPT – 1.0 0.0 0.0 0.0 0.0 EPT – 1.0 0.0 0.0 0.01 0.01

KVP – – 1.0 0.0 0.0 0.0 KVP – – 1.0 0.0 0.0 0.0

LC – – – 1.0 0.0 0.0 LC – – – 1.0 0.0 0.0

DiSAT – – – – 1.0 0.11 DiSAT – – – – 1.0 0.0

VPT – – – – – 1.0 VPT – – – – – 1.0

EPT* EPT KVP LC DiSAT VPT EPT* EPT KVP LC DiSAT VPT

(c) RVEC-16 (d) RVEC-20

EPT* 1.0 0.0 0.0 0.0 0.0 0.0 EPT* 1.0 0.42 0.0 0.0 0.0 0.0

EPT – 1.0 0.0 0.0 0.0 0.0 EPT – 1.0 0.0 0.0 0.0 0.0

KVP – – 1.0 0.0 0.0 0.0 KVP – – 1.0 0.86 0.0 0.0

LC – – – 1.0 0.0 0.0 LC – – – 1.0 0.0 0.0

DiSAT – – – – 1.0 0.0 DiSAT – – – – 1.0 0.0

VPT – – – – – 1.0 VPT – – – – – 1.0

We use RVEC-*-1M benchmarks and Wilcoxon signed-rank to compute p values; values higher than 0.05 are
in bold face

For the hypothesis test, we used the Wilcoxon signed-rank test since it is nonparametric,
and we cannot ensure a particular distribution on our result data; please note that Wilcoxon
is a paired difference test, and outputs the probability that the two samples were taken from
the same distribution, i.e., which may imply that indexes are the same in practice. Please
notice that indexes use different configurations, and the test requires samples of equal size;
therefore, we always use configurations with the lesser memory to adjust the size of the
sample. For instance, this decision means that VPT and DiSAT compare only with that EPT*
index with the smaller memory usage in the set of configurations.

Table 4a, b shows p values for RVEC-8-1M and RVEC-12-1M, respectively. Here, we
found that almost all of these indexes perform different except DiSAT and VPT, with a small
p of 0.11 for the eight-dimensional dataset. In the case of RVEC-12-1M, the smallest EPT*
and DiSAT also perform similarly with a p = 0.34.

Table 4c shows that all indexes perform different. For Table 4d, EPT* and EPT perform
similarly since the null hypothesis cannot be rejected; the same is true for KVP and LC, but
in particular, this result seems to be induced by the variability of LC.

5.3 When the size of the database changes

Now, we study the performance when the size of the database changes. The sizes are 105, 3×
105, 106, 3×106, and 107 vectors. We used the synthetic database of dimension 16 for these
experiments.

Besides studying the performance as n grows, this experiment also tries to capture the
performance on large datasets where the memory is a scarce resource, so we limit the amount
of memory of pivot-based indexes LAESA, BNC, EPT, and KVP to use at most 4 pivots or
groups. The present experiment can be seen as a large and high-dimensional benchmark.
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(a) Number of evaluated distances. (b) Speedup. Higher is better.
Smaller is better.

Fig. 3 Performance on RVEC of 16 dimensions and increasing n

Table 5 Statistical test for
RVEC-16-105

EPT* EPT KVP LC DiSAT VPT

EPT* 1.00 0.00 0.00 0.00 0.00 0.00

EPT – 1.00 0.01 0.09 0.00 0.00

KVP – – 1.00 0.76 0.00 0.00

LC – – – 1.00 0.00 0.00

DiSAT – – – – 1.00 0.00

VPT – – – – – 1.00

Bold text marks p values higher than 0.05. Larger RVEC-16 benchmarks
show that all tested indexes have different performances as n increases

In Fig. 3, each point of the curves corresponds, from left to right, to an increasing number
of items in the database. Figure 3b shows the speedup. Here, the EPT and EPT* are surpassed
only by the LC; however, they are the indexes computing fewer distances (Fig. 3a). Again,
it is necessary to mention that L2 over 16 coordinates can be seen as high dimensionality,
but it is still computed very fast. Notice how VPT, SAT, LAESA, and BNC are reduced to a
sequential scan, the latter mostly because the memory usage is limited. In this scenario, the
EPT is beaten just by the optimum LC in speed, but remember that our method is simpler to
configure and less expensive to build. The preprocessing time will be detailed shortly.

Table 5 shows the p values of the Wilcoxon signed-rank test applied to RVEC-16-105

benchmark. We can see that almost all indexes are statistically different except KVP and LC
that are pretty similar at this database’s size; also, there is a small similarity for EPT and LC.
For larger datasets, 3× 105, 106, 3× 106, and 107, we found that all indexes are statistically
different and we omit their listing, i.e., p values of the upper-triangle matrix are 0 for two
decimal values.

About preprocessing time. Table 6 shows the construction time for a number of methods of
Fig. 3. Please remember that DiSAT, SAT, VPT, and LC cannot be improved using more
memory. Despite this, LC’s performance surpasses almost any other index for increasing n.
This performance is because LC trades preprocessing time by search speed, adjusting the size
of the clusters, i.e., setting n/m. In particular, Table 6 shows the cost of LC maximizing the
Speedup. To fix ideas, when n = 107, we found that n/m = 64 is the best setup; however, if
we optimize to decrease the number of evaluated distances, the best parameter is n/m = 16.
So, the optimum LC needs 57 days. Since LC is naturally sequential, a parallel optimizer
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Table 6 Construction time as a
function of n

Method Construction time (grouped by size)

107 3 × 106 106

LC 7days 4h 3days 16h 6h

EPT* 1h 50min 30min 5min

EPT 46min 6min 2min

KVP 40min 11min 5min

SAT 13min 4min < 1min

DiSAT 26min 9min 2 min

VPT 6min 1min < 1min

We used random vectors in 16 dimensions for this experiment. Please
notice that EPT and EPT* have a slower preprocessing step in high
dimensions than in low dimensions because it is translated as a slow
convergence in its construction algorithms

could do the job in half the time, creating all LC’s at the same time; however, this implies
to have a hint of on n/m. In any case, it is too expensive for practice, especially on large
datasets and costly distance functions.

We selected the best setup among a large number of configurations, described at the
beginning of this section. For KVP, the number of near and far pivots should be specified, and
also the number of available pivots. The table shows the construction time to select two nearest
and two furthest pivots from a total of 1024. The parameters can also be called in parallel,
and even when it could be easily implemented, it could be extremely costly without a hint.

In the case of EPT and EPT*,we suggest to determine the amount ofmemory to be � ≤ 16;
in particular, we use � = 4 for this section. We also fixed β = 0.8 and window = 16,
respectively, for EPT and EPT*. The idea is that even when β and window determines the
EPT’s search performance, they are in fact,meta-parameters leading the optimizing algorithm
to find the proper number of pivots per group. So, whenever we fix � to some value, we are
just simplifying the optimizing algorithm, such that it only needs to find the proper number
of pivots. Since EPT’s groups are independent of each other, Table 6 shows the time of
construction of a single group. We spawn one thread per group.

5.4 Performance of our indexes on real databases

In this section, we explore the performance of exact metric indexes in real datasets. These
datasets were selected to be different; the idea is to give a comprehensive perspective of the
methods, and how they could perform on different domains. In these benchmarks, we do not
limit the memory usage, excepting for SSS which is limited to use at most 512 pivots (i.e.,
at most 4K per object) due to practical restrictions.

The Nasa database is the smallest, and almost any method has a relatively good perfor-
mance on it. In Fig. 4a, we show how much faster are the methods compared to sequential
search. Not all the indexes profit from using more memory because the internal mechanism
to navigate the index has complexity comparable to an exhaustive scan. Here, LC and VPT
are the best performing indexes. Notice how these two methods are not the best ones for
the number of evaluated distances (left side). This place corresponds to SSS, but it is the
worst performing from the speedup (right figure), and the memory usage perspective. Our
EPT and EPT* show a good trade-off; this is important to be noticed since datasets having
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(a) Performance comparison on Nasa, n =40,150, L2, 20 coordinates.

(b) Performance comparison on Colors, n =112,682, L2, 112 coordinates.

(c) Performance comparison on Gutenberg, n =2,178,587, edit distance.

(d) Performance comparison on CoPhIR-1M, n =1,000,000, L , 208 coordinates.

Fig. 4 Performance comparison of state-of-the-art exact metric indexes for nearest neighbor search on datasets
generated by real-world processes. Figures on the left side show the search cost, and figures on the right side
show the speedup
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Table 7 Wilcoxon signed-rank p values for our real-world benchmarks for speedup performance

EPT* EPT KVP LC DiSAT VPT EPT* EPT KVP LC DiSAT VPT

(a) Nasa (b) Colors

EPT* 1.00 0.00 0.00 0.00 0.53 0.01 EPT* 1.00 0.00 0.00 0.00 0.00 0.00

EPT – 1.00 0.97 0.00 0.00 0.00 EPT – 1.00 0.00 0.00 0.00 0.00

KVP – – 1.00 0.00 0.00 0.00 KVP – – 1.00 0.00 0.00 0.00

LC – – – 1.00 0.01 0.00 LC – – – 1.00 0.00 0.00

DiSAT – – – – 1.00 0.00 DiSAT – – – – 1.00 0.00

VPT – – – – – 1.00 VPT – – – – – 1.00

EPT* EPT KVP LC DiSAT VPT EPT* EPT KVP LC DiSAT VPT

(c) CoPhIR (d) Gutenberg

EPT* 1.00 0.00 0.00 0.00 0.00 0.00 EPT* 1.00 0.76 0.00 0.11 0.00 0.00

EPT – 1.00 0.00 0.00 0.00 0.00 EPT – 1.00 0.00 0.63 0.00 0.00

KVP – – 1.00 0.00 0.00 0.00 KVP – – 1.00 0.00 0.00 0.00

LC – – – 1.00 0.00 0.00 LC – – – 1.00 0.00 0.00

DiSAT – – – – 1.00 0.78 DiSAT – – – – 1.00 0.00

VPT – – – – – 1.00 VPT – – – – – 1.00

Bold text marks those values where p ≥ 0.05

similar properties to Nasa could find a better index in EPT, especially if the distance function
is expensive.

In Fig. 4b, we see that in the Colors database the EPT and EPT* are the best choices,
in both the number of computed distances and the speedup. In this database, the cost of the
distance function is higher than in our previous benchmarks. Thus, the number of computed
distances has a more significant component in the total search time. In some way, this is what
is expected in practical applications using complex objects and complex distance functions.

The Gutenberg database experiments took more time than the others. The results are
shown in Fig. 4c. Here, we found that the optimal setup of LC has a higher speedup than the
rest of the indexes. However, its construction cost is many times larger than the one needed by
any of the other methods. After LC, EPT and EPT* are better options. (Also they are the best
performing when the cost is the number of computed distances.) Recall that Gutenberg uses
edit distance tofind similarwords in a dictionary. If distances become slightlymore expensive,
e.g., larger words or different comparison functions for the word’s symbols, our EPT could
outperform better than others since it performs fewer evaluations of the distance function.

Figure 4d shows that the best performance is with the EPT on CoPhIR-1M. Also, the EPT
outperforms the alternatives for speedup, as shown at the right side of the figure. The LC index
is useful, but it cannot perform better than most pivot-based indexes, mainly because per-
forming L2 over two 208-dimensional vectors is a costly operation. Other compact partition
indexes like SAT, DiSAT, and VPT are also surpassed. One observation is that memory-
limited indexes can be used in mobile devices. The smartphones and tablets processors are
powerful enough to run these indexes and, since their memory is limited, the EPT is the best
option for them. On the other hand, high-end workstations and servers can use more massive
databases, without relying on secondary memory.

Table 7 shows the statistical test for our EPT* and EPT and a selection of our tested
metric indexes for our real-world benchmarks, and in particular, for the results of the speedup
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performance. Notice that the diagonal shows the reflexivity of applying the statistical test to
the same index’s results. Table 7a lists the p values for the Nasa dataset, where our EPT* and
EPT perform differently between them andwith almost all indexes.We found two exceptions,
the first one is DiSAT, where EPT* performs pretty similar to the smallest configuration of
EPT*; the second one is on EPT and KVP that perform almost identical regarding speedup.
This behavior is illustrated in Fig. 4a.

Table 7b shows that all indexes perform differently, and thus, Fig. 4b gives a transparent
snapshot of the performance of our indexes.

Table 7c shows that our EPT* and EPT are different indexes under the CoPhIR benchmark.
It is interesting to note the p value between DiSAT and VPT is high, 0.78, and this value
implies a high variance in their results that must be taken into account whenever we use these
methods on a similar benchmark, i.e., this benchmark is based on L1 and vectors are small
integers. This behavior is hidden if we use only mean values, Fig. 4c, to compare, which also
illustrates the necessity of performing statistical hypothesis tests to lead the selection of an
index for a specific task.

Table 7d shows p values for the Gutenberg benchmark. In this benchmark, we found that
EPT* and EPT perform almost identical, and even EPT* and LC performs similarly. It is
also interesting to find that EPT and LC perform pretty similar, both in their configurations
with smaller memory usage. As in the case of CoPhIR, this behavior is unnoticeable without
a proper statistical test.

6 Discussion

It is important to contrast the EPT with the list of clusters (LC), which is a fast and memory-
lightweight index. Given a little extra memory, EPT can surpass the search performance of
LC, as measured in the number of computed distances. From the speedup point of view,
EPT surpasses LC whenever the distance function is costly enough. However, fast distance
functions convert LC in a very fast index. On the other hand, the size of the database is
a significant problem for LC, especially for high intrinsic dimensionalities which imply
impractical construction times, as noted in Table 6.

In contrast to LC, our EPT accepts incremental refining of the index, both of our con-
struction algorithms are based on that; basically, this means that we only need to perform an
initialization of the index and then it can solve queries. So, applications that cannot afford
large preprocessing times can use a suboptimal EPT and let the optimizing construction run
in the background, while queries are solved in a different thread, in this way indexes become
faster as time goes.

Based on Figs. 2 and 4, we can observe that search cost and speedup do not optimize their
performance on the same index’s complexity (captured in figures as index’s memory); and it
is common to see that small search costs regarding distance evaluations do not correspond
with high speedup (measured as clock time improvement to sequential search), and in fact,
better speedups occur on EPT indexes with relatively small � values. This behavior implies
that we must keep in mind this trade-off for practical applications.

Nevertheless, EP is not a cure-all remedy for metric indexing. On the one hand, the curse
of dimensionality is not avoided, it is only deferred, as the dimension increases the EP needs
larger α values, i.e., EP degrades to a sequential search in the limit. On the second hand,
even in the reasonable range of dimension, EP is highly dependent on the quality of the
estimations of σ 2

X , σ 2
Y and r . So, if query distributes pretty different, then the performance
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cannot be ensured. However, the assumption that the query distribution can be estimated
using the database seems reasonable for a broad range of practical applications.

6.1 Comments on approximated algorithms

Any exact metric index will degrade to sequential search as the intrinsic dimensionality of the
dataset increases. EP is not an exception; it is just more robust than many other exact indexes.
Whenever it is possible to accept some deviations of the result, an approximate algorithm
should improve the performance of an exact one. The same argument applies when the speed
is preferred over the precision of the response.

There exist a few yet well-known, systematic techniques to transform an exact metric
index into an approximate or probabilistic one. In [9], the key idea is to keep untouched the
index structure, while the search algorithm takes optimistic decisions in determining if an
object is part of the result set. More precisely, the technique, sometimes called aggressive
pruning, is based on stretching the triangle inequality. Think on D(q, u) which is a lower
bound of d(q, u) as induced by pivots (Sect. 1). Since D(q, u) ≤ d(q, u), the set of items
retrieved by D will always contain that retrieved by d . The question is then, how the addition
of a parameter 0 < γ < 1 in the formulation D(q, u) ≤ γ d(q, u) will affect the result set?
The answer is a probabilistic one, and in practical terms, a small perturbation (γ close to 1)
will improve the search speed significantly, while the quality of the result set remains high.
The interested reader is referenced to dedicated studies of the technique [9,39]. Notice that
this is a way to convert our EPT in an approximate index, a generic way in fact.

A general method to compute the necessary γ to obtain the desired result quality or search
speed is still missing in the area.

6.2 Comments onmulti-threading implementations

Nowadays, most of the available commodity computers contain a multi-core architecture.
Thus, we believe it is important commenting on how to take advantage of the current hardware
in our EPT index. The comments focus on both the construction and the searching steps.

Recall that EPT is composed of � pivot groups. Each pivot group is independently con-
structed (Algorithms 2 and 3); thus at this level, the construction step is a pleasingly parallel
problem. It just needs � parallel runs of the construction algorithm. In the case of Algorithm 3,
an additional point of pleasingly parallelization is located if themaximization process is trans-
posed, i.e., interchanging for loops of lines 5 and 11. This process is equivalent to searching for
the best pivot amongwindow alternatives. Notice that the update of σ 2

X should be performed
outside of the for loops.

The searching step can also be divided into � searches. Then, gathering the result discarding
duplicates or itemsoutside of the desired set (further k in k-nnqueries). If the distance function
is costly, then the searchmust avoid the evaluation of distances asmuch as it is possible. In this
case, each thread collects candidates; then, in a final step, those items not being discarded by
any of the � pivot groups should be reviewed against the distance function. The transposition
of for loops (lines 3 and 5) also allows good parallelizations; however, H should be kept
isolated for each different thread.

In our experimental section, we used parallel construction to speed up the creation of
indexes, but the search algorithm was not parallelized. More complex parallel algorithms are
beyond the scope of this manuscript. The same goes for distributed systems.
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6.3 A note on secondarymemory indexes

When the size of the dataset plus the size of the indexes surpasses the available mainmemory,
it ismandatory tomove the index to a largermemory level like the disk.Notice that this implies
slower accesses than in RAM. As listed in Sect. 1, there exist some metric indexes working
on disk. We have maybe listed the most popular ones: M-Tree, PM-Tree, and M-Index. In
all these cases, the dynamism and secondary memories strategies (routing nodes, insertion,
and deletion) are strongly related to B+-Trees. Also, in all of them, we can observe a data
structure based on compact partitions (along with the explicit use of pivots).

Please note that this manuscript is dedicated to set the foundations of EP. Then, we believe
essential in focusing on main memory structures due to the difficulty of design indexes in
secondary memory. However, we recognize the existence of two major problems needing
special attention from the memory perspective and how to tackle them using EPT.

– Large objects. Depending on the size of the object and the dataset, the available main
memory can be surpassed. This issue is complex even for disk-based indexes since each
object could need random access.

– Very large datasets. No matter the memory efficiency of the index, an index over a
very large dataset will need a secondary memory index or the use of a large distributed
searching system.

In the former case, it is possible to transform the dataset into a smaller representation. There
exist several transformations capturing the proximity of the original space while reducing
the representation. This step is standard in many areas since it can clean-up noisy data.
Perhaps the most prevalent techniques are PCA, random projections, quantization, and LSI,
among many others. The interested reader is referred to the detailed literature on the field
[4]. Nevertheless, it is true that these techniques are dependent on the representation and
not suitable for the generality of the metric space approach. Also, due to the nature of these
methods, its usage implies to lose some information.

In the case of very large datasets, it is impossible to overcome the memory issues arising
from their indexing. However, since our EP technique has low memory needs and high-
performance searches, it could be part of the filters of secondary memory indexes or even
part of the workers of a distributed searching system.

Notice that for moderate datasets (or very large ones segmented in a distributed system),
EPT can be used in a hybrid approach as follows.

– The EPT matrix of pairs (piv(u), d(u,piv(u)) and the actual representation of all pivots
are maintained in main memory.

– The rest of the dataset (the objects not being pivots in any group) are stored in secondary
memory.

– The search algorithm corresponds to the one described in Algorithm 1; however, in the
disk structure, the review’s order is fixed to the natural order of the stored dataset (line 5).

A proper study of a secondary memory version of EP beyond the scope of this work and
it is left for further research.

7 Conclusions

This manuscript presented a novel metric search technique called extreme pivots (EP). EP
describes a way to create efficient metric indexes, mainly based on the study of how to relate
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objects in a dataset to routing objects (pivots). Recently, most research in the field has been
devoted to find the best set of pivots discarding items in a dataset for a given query; several
heuristics have been proposed to reach that objective. EP shifts the paradigm by selecting the
best items for a given pivot. This simple change of perspective allows for producing small
and fast metric indexes. In particular, we fix the implementation to a table-based index called
EP Table (EPT), a metric index performing better than related alternatives. The indexing
technique incorporates a model which was experimentally proved to be useful if the distance
distribution from the objects to the pivots is known, or can be estimated as it is the case of
our benchmarks.

We introduced two algorithms to construct EPT indexes; both of them only need to know
how much memory should be used in the index structure, and the distribution of the objects
and queries. The rest of the parameters are adjusted based on this information.

An EP index is composed of a fixed number of instances (pivot groups). Also, each pivot
group uses a small constant number of machine words per database element (two or three,
depending on the width of floating point values). We have shown that our implementation
based on tables surpasses the performance of both pivot tables and compact partitioning
indexes, in a vast number of setups. Wherever EPT does not have the best performance, it
achieves attractive trade-offs among memory, search speed, and construction time. Nonethe-
less, obtaining the best index among different scores is a complex multi-objective problem
which is beyond the scope of this manuscript and requires more research. It is worth to notice
that this equilibrium among resource requirements makes the EPT a method that can be used
in real scenarios.

Some aspects of the EPT that need further development are an approximate version, the
use of multiple cores and GPUs to enhance performance, and a dynamic variant where the
size of the index grows over time and adjusts without the need of reconstruction.
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