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REDUCED-ORDER OBSERVER FOR STATE-DEPENDENT
COEFFICIENT FACTORIZED NONLINEAR SYSTEMS

Fernando Ornelas-Tellez, Alma Y. Alanis, Jorge D. Rios and Mario Graff

ABSTRACT

This paper presents a reduced-order observer for state-dependent coefficient factorized nonlinear systems. By con-
sidering that a partial knowledge of the state vector is available from measurements, estimating the full state vector
may be unnecessary, which consequently reduces the order of the observer and thus avoids unnecessary implementation
issues. In this manuscript, the asymptotic convergence of the proposed reduced-order observer is established when an
adequate state-dependent factorization for the nonlinear system is obtained. This paper demonstrates the ease of syn-
thesizing reduced-order observers for state-dependent coefficient factorized nonlinear systems. The effectiveness of the
proposed observer is illustrated in real-time for the optimal tracking control of a linear induction motor.

Key Words: Reduced-order observer, state-dependent coefficient factorized nonlinear systems, nonlinear optimal
tracking control, linear induction motor.

I. INTRODUCTION

For control systems, in order to obtain high perfor-
mance from a synthesized controller, knowledge of the
system model is usually required, where the state vari-
ables involved in the system are used for feedback. Hence,
under this condition, it is assumed that the full state
variables are available for feedback; however, in practice,
when the full state vector is not accessible from measure-
ments, synthesizing a state observer in order to estimate
the missing state variables is necessary. This estimation
can be derived from the synthesis of a full-order observer
(when the order of the observer is the same as the sys-
tem) or a reduced-order observer (when the order of the
observer is less than the system). State estimation has
been studied by many authors, who have obtained a range
of interesting results [1–6]. In particular, this paper con-
siders the reduced-order observer scheme, which results
from assuming that we have partial knowledge of the
state vector. Therefore, it could be unnecessary to esti-
mate all of the state vector, leading to the synthesis of an
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observer of order n−q, where n is the order of the system
and q is the number of the available state variables from
measurements.

This paper proposes a methodology for the syn-
thesis of a reduced-order observer for the class of
state-dependent coefficient factorized (SDCF) nonlinear
systems. The proposed observer ensures an asymptotic
convergence of the estimation error when an adequate
factorization of the nonlinear system can be obtained.
Various advantages can be exploited for SDCF systems,
such as stability analysis, controller design methodolo-
gies, observer synthesis, and filter designs [7], among
others, which can be analogously designed as developed
for linear systems. One of the drawbacks of the SDCF
strategy is the non-uniqueness of the factorization, which
could mean that selecting an appropriate factorization of
large and/or complicated nonlinear systems is a difficult
task. Different experimental and practical applications
of this SDCF control methodology have demonstrated
its effectiveness for a great variety of nonlinear systems
[8–15]. A comprehensive survey for SDCF nonlinear sys-
tems is presented in [16]. Note that although results
regarding state estimation for SDCF nonlinear systems
exist [2,3,8,17], the reduced-order observers’ synthesis for
this class of systems, to the best of our knowledge, has
not been analyzed. The applicability of the reduced-order
observer synthesis is illustrated and validated in real-time
for the observer-based optimal tracking control of a
linear induction motor (LIM).

The paper is organized as follows. The synthesis of
a reduced-order observer for the class of SDCF non-
linear systems is described in Section II. Section III
presents an optimal tracking control scheme for this
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class of nonlinear systems. Section IV presents the
real-time implementation and the experimental results of
the proposed reduced-order observer-based optimal con-
trol scheme for a LIM. Finally, Section V concludes the
paper.

II. REDUCED-ORDER OBSERVER FOR
SDCF NONLINEAR SYSTEMS

2.1 SDCF nonlinear systems

This section describes the nonlinear systems that
can be represented by a state-dependent coefficient fac-
torization and for which the reduced-order observer is
proposed.

Let us consider the nonlinear system

ẋ = f (x) + B(x) u, x(t0) = x0 (1)

ym = H x (2)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input and ym ∈ Rq is the vector of the system measured
variables; functions f (x) and B(x) are smooth maps of
appropriate dimensions, with f (0) = 0, and H ∈ Rq×n is
a constant matrix related to the measured variables.

Consider that f (x) in (1) can be decomposed in the
SDCF form [18–20] as f (x) = A(x) x, then system (1)
results in

ẋ = A(x) x + B(x) u. (3)

As established in [7,21], the assumptions f (0) = 0
and f (⋅) ∈ C1 allow that the factorization as described in
(3) can be carried out. Note that A(x) x is not unique [8].
In order to obtain well-defined control schemes, appro-
priate factorization for these representations should be
determined such that controllability and observability
properties are fulfilled for systems (2)– (3), which are
described in detail in [8,11,18,22].

2.2 Reduced-order observer synthesis

This section proposes a reduced-order observer for
estimating only the unmeasured states, which depend
indirectly on the available measurements [23–25]. In this
case, partitioning the state vector of the system into two
groups [4,23] is possible: the available states x̄1 from
measurements and the unavailable states x̄2.

Let us assume that H in (2) has a full row rank, that
is, rank{H} = q. Define a matrix

T =
[

H
S

]

where S is a (n − q) × n real matrix, which is selected
entirely arbitrarily such that T is nonsingular. By apply-
ing the similitude transformation x̄ = Tx to system (3),
the following transformed system is then obtained:

̇̄x = TA (x̄)T−1x̄ + TB (x̄) u

ym = H T−1x̄

=
[

Iq 0
]

x̄

(4)

where Iq is the q × q identity matrix and x̄ = Tx =[
x̄T

1 , x̄T
2

]T
, the dynamics of which can be partitioned as[

̇̄x1
̇̄x2

]
=
[

A11 (x̄) A12 (x̄)
A21 (x̄) A22 (x̄)

] [
x̄1
x̄2

]
+
[

B1 (x̄)
B2 (x̄)

]
u (5)

with

ym = x̄1 (6)

as the system measured variables.
For the transformed system, vector x̄1 contains the

first q entries of x̄ and x̄2 the remaining ones. Matrices
A11 (x̄), A12 (x̄), A21 (x̄), A22 (x̄), B1 (x̄) and B2 (x̄) are of
appropriate dimensions and accordingly are partitioned
from (4).

By using (6), system (5) can be rewritten as[
ẏm
̇̄x2

]
=
[

A11 (x̄) A12 (x̄)
A21 (x̄) A22 (x̄)

] [
ym
x̄2

]
+
[

B1 (x̄)
B2 (x̄)

]
u. (7)

By defining ū = A21 (x̄) ym + B2 (x̄) u and 𝜛 = ẏm −
A11 (x̄) ym − B1 (x̄) u, we obtain

̇̄x2 = A22 (x̄) x̄2 + ū

𝜛 = A12 (x̄) x̄2.
(8)

Therefore, when system (8) is state-dependent
observable, then an estimator can be constructed for x̄2
such as

̇̄̂x2 = A22

(
̂̄x
)
̂̄x2 + ū + L̄ (𝜛 − �̂�)

= A22

(
̂̄x
)
̂̄x2 + ū + L̄

(
𝜛 − A12

(
̂̄x
)
̂̄x2

)
=
(
A22

(
̂̄x
)
− L̄A12

(
̂̄x
))

̂̄x2

+
(
A21

(
̂̄x
)
− L̄A11 (x̄)

)
ym

+
(
B2

(
̂̄x
)
− L̄B1

(
̂̄x
))

u + L̄ẏm

(9)

where �̂� = A12

(
̂̄x
)
̂̄x2 and L̄ is the estimation error gain

used to achieve the estimator convergence.
A suitable change of variable in order to avoid the

time derivative of ym in (9) is realized by defining

z̄ = ̂̄x2 − L̄ ym (10)
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and thus

̇̄z =
(
A22

(
̂̄x
)
− L̄A12

(
̂̄x
)) (

z̄ + L̄ym

)
+
(
A21

(
̂̄x
)
− L̄A11

(
̂̄x
))

ym

+
(
B2

(
̂̄x
)
− L̄B1

(
̂̄x
))

u.

(11)

Hence, from (10), an estimate for x̄2 is given by

̂̄x2 = z̄ + L̄ym. (12)

In order to analyze the stability of the reducer-order
observer, let us consider the estimation error as

e = x̄2 −
(
z̄ + L̄ym

)
(13)

where its time derivative results in

ė = ̇̄x −
(
̇̄z + L̄ẏm

)
= A22 (x̄) x̄2 + A21 (x̄) ym + B2 (x̄) u

−
(
A22

(
̂̄x
)
− L̄A12

(
̂̄x
)) (

z̄ + L̄ym

)
−
(
A21

(
̂̄x
)
− L̄A11

(
̂̄x
))

ym

−
(
B2

(
̂̄x
)
− L̄B1

(
̂̄x
))

u

− L̄A11 (x̄) ym − L̄A12 (x̄) x̄2 − L̄B1 (x̄) u

=
(
A22 (x̄) − L̄A12 (x̄)

)
x̄2

−
(
A22

(
̂̄x
)
− L̄A12

(
̂̄x
)) (

z̄ + L̄ym

)
+
[ (

A21 (x̄) − A21

(
̂̄x
))

+

L̄
(
A11

(
̂̄x
)
− A11 (x̄)

) ]
ym

+
[(

B2 (x̄) − B2

(
̂̄x
))

+ L̄
(
B1

(
̂̄x
)
− B1 (x̄)

)]
u.

(14)

Additionally, suppose that for (14) the following
relations are satisfied in a local region around x̄ and ̂̄x as

‖‖‖[(A21 (x̄) − A21

(
̂̄x
))

+L̄
(
A11 (x̄) − A11

(
̂̄x
))]

ym
‖‖‖ ≤ 𝛾1 ‖e‖ ;‖‖‖[(B2 (x̄) − B2

(
̂̄x
))

+L̄
(
B1 (x̄) − B1

(
̂̄x
))]

u‖‖‖ ≤ (
𝛾2 + 𝛾3 ‖u‖) ‖e‖

(15)

where 𝛾1 and 𝛾2 are nonnegative constants.
By taking into account (14) and (15), the

reduced-order observer design is based on the following
assumptions.

H1. Matrices A12 (x̄) and A22 (x̄) in (14) depend only on
state x̄1, and inequalities in (15) are satisfied.

H2. Consider that matrices Aij (x̄) = Aij

(
x̄1

)
and

Bi (x̄) = Bi

(
x̄1

)
.

Assumption H1 considers that the entries of A12 (x̄)
and A22 (x̄) depend on the system measured variables,
where such a fact is directly related to the system one
deals with; such requirement could be fulfilled for non-
linear systems with the SDCF representation because
of its different state-dependent factorization possibilities
[7,21], while inequalities in (15) consider the possible dif-
ferences between the observer and the system matrices,
which can lead to local results in the observer design.
On the other hand, assumption H2 considers the case
where all the state-dependent matrices depend only on
measured variables (or even constant matrices), then the
observer design is simplified, as stated in Corollary 1.

At this point, the main contribution of the paper is
established as follows.

Theorem 1. Consider that system (1) can be presented
in the SDCF form as in (3) and that (8) is observable.
Assume that H1 is fulfilled. If for a given gain matrix L̄
and a positive constant 𝜅 there exists a positive definite
symmetric matrix W which satisfies

W
(
A22 (x̄) − L̄A12 (x̄)

)
+
(
A22 (x̄) − L̄A12 (x̄)

)T
W ≤ −𝜅 In−q

(16)

with

𝜅 > 2
(
𝛾1 + 𝛾2 + 𝛾3 ‖u‖) ‖W‖ (17)

then the estimation error (13) converges asymptotically
to zero, where In−q is the (n − q) × (n − q) identity matrix.
Moreover, if all assumptions hold globally, then the esti-
mation error converges globally asymptotically to zero.

Proof. See Appendix A.

Note that the relations between (16) and (17) ensure
the estimation error stability in accordance with the sta-
bility analysis carried out in the theorem proof (appendix
A). A posteriori in subsection 4.3.2, such error stability
is also analyzed through the state-dependent eigenval-
ues determination, while inequality (16) is numerically
verified for the LIM application.

In addition to the stated in Theorem 1, suppose that
once factorized f (x) in (3) the assumption H2 is fulfilled,
then the following result can be derived.
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Corollary 1. Suppose that H2 holds. If for a given gain
matrix L̄ and a positive constant 𝜅 there exists a positive
definite symmetric matrix W which satisfies inequality
(16), then the estimation error converges asymptotically
to zero.

Proof. See Appendix B.

Note that in the analysis of the observer conver-
gence, the norm of the control input ‖u‖ in (15) and (17)
appears because of the differences between the matrices
Bi

(
̂̄x
)

and Bi (x̄), which avoid the elimination of the con-
trol input dependence and can lead to local results in
Theorem 1. The requirement of such norm is overcome
when Bi

(
̂̄x
)
= Bi (x̄) = Bi

(
x̄1

)
, that is, when these matri-

ces are state-dependent on measured variables, which
correspond to the result of Corollary 1.

Remark 1. It is worth remarking that the proposed
observer synthesis can be performed for those nonlinear
systems with the SDCF structure, the characteristics of
which can be found in different real systems [8–14]. More-
over, this salient feature is used in this paper to obtain the
solution for the optimal tracking control, as follows.

III. OPTIMAL TRACKING CONTROL FOR
SDCF NONLINEAR SYSTEMS

As an application of the proposed reduced-order
observer, this section uses the estimated states for the
optimal tracking control. In this sense, the optimal track-
ing control solution is stated for SDCF nonlinear sys-
tems, as proposed in [11], under the assumption that the
full state x is available for feedback; nevertheless, this
assumption is often unrealistic since frequently there are
fewer measured variables (ym) than system state vari-
ables, where the remaining ones need to be estimated.
Hence, once the unmeasured variables are estimated, they
are used in combination with the measured ones for the
implementation of the feedback optimal controller.

With respect to the optimal tracking control, the
output of the system is required to track a desired trajec-
tory as closely as possible in an optimal sense and with
minimum control effort expenditure [26–28]. The opti-
mal tracking scheme arises for many applications, such as
aerospace, electrical machines, robotics, among others.

In order to introduce optimal tracking, let us define
for system (3) its respective output to be controlled as

y = C(x) x (18)

while the tracking error is defined as

𝜀 = r − y

= r − C(x) x
(19)

where r is the desired reference to be tracked by the
system output y.

The quadratic cost functional J to be minimized,
associated with system (3), is defined as

J = 1
2 ∫

∞

t0

(
𝜀T Q 𝜀 + uT R u

)
dt (20)

where Q and R are symmetric and positive definite matri-
ces. Therefore, the optimal tracking solution is related to
determining the control u(t), t ∈ [t0,∞), such that the
criterion (20) is minimized.

It is worth noting that y in (18) corresponds to
the (possibly nonlinear) system output to be controlled,
whereas ym in (2) represents the (usually linear) system
measured variables used for the observer synthesis.

3.1 Optimal tracking controller

Let us assume that the state variables are available
for feedback (from measurements and the reduced-order
observer). Under this condition the optimal tracking
control solution is developed in [11] and extended in [15]
for the case in which a disturbance is affecting the system.
The optimal tracking control proposed in [11] (Theorem
2) establishes that for a state-dependent controllable and
observable system (3) with (18), the optimal controller

u∗(x) = −R−1BT (x) (P(x) x − z(x)) (21)

achieves trajectory tracking for the system along a
desired trajectory r, where P(x) is the solution of

Ṗ(x) = −CT (x)Q C(x) + P(x)B(x)R−1 BT (x)
× P(x) − AT (x)P(x) − P(x)A(x)

(22)

and z(x) is the solution of

ż(x) = −
[
A(x) − B(x)R−1BT (x)P(x)

]T
z(x)

− CT (x)Q r
(23)

with boundary conditions P(x(∞)) = 0 and z(x(∞)) = 0,
respectively∗ .

∗ Please note that in [11] (Theorem 2), there is performed a simplification in the
notation, nonetheless, the full notation is P(x(∞)) = 0 and z(x(∞)) = 0.

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
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Fig. 1. Observer-based optimal tracking control scheme.

Remark 2. Notice the motions of P and z, that is, the
motions of differential Riccati Eq. (22) and differential
vector (23), are time-depending, that is P(t) and z(t), and
are only state-dependent functions in accordance with
their respective right-hand side through matrices A(x),
B(x) and C(x), as proposed and developed in [29], in
which a state-dependent differential Riccati equation is
solved instead of solving an algebraic one. Such state
dependences are denoted in this paper and in [11] as P(x)
and z(x), respectively.

The resulting control law (21) is optimal in the
sense that it minimizes the cost functional (20). Addi-
tional details of the controller design can be seen in
[11]. It is worth mentioning that different works have
taken advantage of the state-dependent Riccati Eq. (22)
in the analysis and synthesis of nonlinear optimal control
methodologies and their applications [30–34].

Based on the separation principle [35,36], the design
of the optimal tracking controller for SDCF non-
linear systems is combined with the state-dependent
reduced-order observer, established by (11)– (12). The
complete control scheme for achieving the optimal track-
ing control in combination with the proposed observer is
illustrated in Fig. 1.

IV. REAL-TIME APPLICATION FOR THE
LIM

This section illustrates the real-time applicability of
the proposed observer synthesis and optimal tracking
control for the LIM, with a dynamical model that can
be described as a multiple-input multiple-output SDCF
nonlinear system. The LIM is a special electrical machine
in which the electrical energy is directly converted into
mechanical energy of translatory motion. This system
has found its applications in transportation, industry,
automation, and home appliances [37,38], among others,
where a linear motion is required. The LIM has many
excellent performance features, such as high-starting

thrust force, elimination of gears between motor and
motion devices, reduction of mechanical losses and the
size of motion devices, high-speed operation and silence
[37,39].

4.1 Linear induction motor prototype description

The plant for applying the observer-controller is
the LIM LabVolt model 8228 (trademark of LabVolt®),
shown in Fig. 2. In accordance with the user manual [40],
the movable part corresponds to the stator, which is made
of an iron core and windings on 18 mm polyvinyl chloride
blocks mounted on bearing rollers, while the rotor is a 2 m
rail made of an iron support and an aluminum plate. In
the LIM, the stator is excited by a three-phase power sup-
ply such that a traveling flux is generated in the stator and
induced into the rotor, producing the respective induced
currents in the rotor (also named Foucault currents),
then a force is originated to generate the linear move-
ment [38]. Fig. 3a depicts the connection scheme between
the different devices for the linear induction motor pro-
totype. The personal computer includes the necessary
software for the algorithms’ implementation and for the
transmission of the information to the data acquisition
board. The corresponding control signals are applied
to the power converter module (Fig. 3b), which trans-
forms them into the adequate control inputs (via a PWM
strategy) for the LIM. The position and the currents mea-
surements are also transmitted to the data acquisition
board to obtain a closed-loop system. The algorithms are
implemented in the data acquisition and control board
DS1104 (trademark of dSpace GmbH). This board per-
mits downloading applications directly from Simulink
(MathWorks Inc®).

Fig. 2. Linear induction motor system. [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. 3. LIM prototype description. [Color figure can be viewed at wileyonlinelibrary.com]

4.2 Linear induction motor model

The LIM in the 𝛼 − 𝛽 frame is described by the
following nonlinear system [41]:

d qm

d t
= v

d v
d t

= −k1

(
i𝛼
(
𝜆𝛼 sin

(
np qm

)
+ 𝜆𝛽 cos

(
np qm

))
+ i𝛽

(
𝜆𝛽 sin

(
np qm

)
− 𝜆𝛼 cos

(
np qm

)) )
− k2v

d 𝜆𝛼

d t
= −k4

(
i𝛼 sin

(
np qm

)
− i𝛽 cos

(
np qm

))
+ k4v

(
i𝛼 sin

(
np qm

)
− i𝛽 cos

(
np qm

))
+ k5

(
i𝛼 cos

(
np qm

)
+ i𝛽 sin

(
np qm

))
− k6𝜆𝛼

d 𝜆𝛽

d t
= k5

(
cos

(
np qm

)
i𝛽 − sin

(
np qm

)
i𝛼
)

− k4

(
cos

(
np qm

)
i𝛼 + sin

(
np qm

)
i𝛽
)

+ k4v
(
cos

(
np qm

)
i𝛼 + sin

(
np qm

)
i𝛽
)
− k6𝜆𝛽

d i𝛼
d t

= k9i𝛼 − k10u𝛼 + k8v
(
− sin

(
np qm

)
𝜆𝛼

− cos
(
np qm

)
𝜆𝛽
)
− k7

(
cos

(
np qm

)
𝜆𝛼

− sin
(
np qm

)
𝜆𝛽
)

d i𝛽
d t

= k9i𝛽 − k10u𝛽 − k7

(
sin

(
np qm

)
𝜆𝛼

+ cos
(
np qm

)
𝜆𝛽
)
+ k8v

(
cos

(
np qm

)
𝜆𝛼

− sin
(
np qm

)
𝜆𝛽
)

(24)

with

k1 =
Lsrnp

DmLr
; k2 =

Rm

Dm
; k3 = 1

Dm
;

k4 = Lsrnp; k5 =
LsrRr

Lr
; k6 =

Rr

Lr
;

k7 =
LsrRr

Lr

(
L2

sr − LrLs

) ; k8 =
Lsrnp

L2
sr − LrLs

;

k9 =
L2

r Rs + L2
srRr

Lr

(
L2

sr − LrLs

) ; k10 =
Lr

L2
sr − LrLs

where qm is the position, v is the linear velocity, 𝜆𝛼 and
𝜆𝛽 are the rotor fluxes, i𝛼 and i𝛽 are the stator cur-
rents, and u𝛼 and u𝛽 are the voltages. Parameter Rs is
the winding resistance per phase, Rr is the secondary
resistance per phase, Lsr is the maximum mutual induc-
tance between stator and rotor, Ls is the primary induc-
tance per phase, Lr is the secondary inductance per
phase, Rm is the viscous friction and iron-loss coeffi-
cient, Dm is the mass of the moving element and np is
the number of poles’ pairs. The parameters of the plant
are Rs = 5.3Ω, Ls = 28 mH, Rr = 3.5Ω, Lr =
28 mH, Lsr = 24 mH, Dm = 2.7 kg, Rm = 36 kg∕s,
and np = 4.

A(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

1
−k2

k4

(
𝜌1(x1)x5 − 𝜌2(x1)x6

)
k4

(
𝜌2(x1)x5 + 𝜌1(x1)x6

)
0
0

0
k1𝜌2(x1)x6 − k1𝜌1(x1)x5

−k6
0

−k7𝜌2(x1) − k8𝜌1(x1)x2
k8𝜌2(x1)x2 − k7𝜌1(x1)

0
−k1𝜌2(x1)x5 − k1𝜌1(x1)x6

0
−k6k7𝜌1(x1) − k8𝜌2(x1)x2
−k7𝜌2(x1) − k8𝜌1(x1)x2

0
0

k5𝜌2(x1) − k4𝜌1(x1)
−k5𝜌1(x1) − k4𝜌2(x1)

k9
0

0
0

k5𝜌1(x1) + k4𝜌2(x1)
k5𝜌2(x1) − k4𝜌1(x1)

0
k9

⎤⎥⎥⎥⎥⎥⎥⎦
;
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The system outputs to be controlled are the posi-
tion qm and the flux squared module (typically used to
maximize the motor efficiency [42]), which are defined
respectively as

y1 = qm

y2 = 𝜆2
𝛼
+ 𝜆2

𝛽
.

By defining the state vector and the control input as

x =

⎡⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

qm
v
𝜆𝛼
𝜆𝛽
i𝛼
i𝛽

⎤⎥⎥⎥⎥⎥⎥⎦
; u =

[
u𝛼

u𝛽

]

system (24) can then be rewritten as

ẋ = A(x) x + B(x) u

y = C(x) x
(25)

where A(x) is defined at the bottom of the previous page,
with 𝜌1(x1) = sin

(
npx1

)
and 𝜌2(x1) = cos

(
npx1

)
,

B(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0

−k10 0
0 −k10

⎤⎥⎥⎥⎥⎥⎥⎦
; CT (x) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0
0 0
0 x3
0 x4
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

We remark that the SDCF structure in (25)
is rather general for industrial applications, and the
state-dependence in the associated matrices A(x), B(x)
and C(x) rely on each particular system, where some
of those matrices could be state-independent (i.e., con-
stant matrices). Apart from the LIM system presented
for the case study in this paper, other practical nonlin-
ear components related to power systems can be mod-
eled with the SDCF representation; for instance, the
doubly-fed induction generator [11], the synchronous
generator [12], three-phase back-to-back power convert-
ers [43], biomedical applications [44], among others.
Therefore, the real-time implementation of state feed-
back controllers for these systems requires adequate
observers with the aim of reducing implementation costs
and of estimating variables that are difficult to measure.

4.3 Reduced-order observer synthesis for the LIM

In applications where a state-feedback controller is
desired to be implemented, the design of observers to
estimate the unmeasured variables is usually necessary

[23,45–47]. In this case for the LIM, assume that the
linear position qm, the linear velocity v, the stator cur-
rents

(
i𝛼, i𝛽

)
, and the input voltages

(
u𝛼, u𝛽

)
are available

from measurements; therefore, matrix H related to the
measured variables in (2) is given as

H =
⎡⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎦
and hence n = 6 and q = 4. A state feedback control
synthesis, however, cannot be performed since the rotor
fluxes are not available, and they are not easy to measure.
Therefore, it is reasonable to synthesize a reduced-order
observer to estimate the rotor fluxes

(
𝜆𝛼, 𝜆𝛽

)
as follows.

4.3.1 Transformed induction motor model

In accordance with Section II, the nonsingular
transformation matrix T is determined as

T =
[

H
S

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
where S =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
. Thus a system is obtained

with the structure given in (5)– (6), with x̄ =
[

x̄T
1 x̄T

2

]T
,

where x̄1 =
[

x1 x2 x5 x6

]T
, x̄2 =

[
x3 x4

]T
and

A11 (x̄) =
⎡⎢⎢⎢⎣

0 1 0 0
0 −k2 0 0
0 0 k9 0
0 0 0 k9

⎤⎥⎥⎥⎦
; A22 (x̄) =

[
−k6 0

0 −k6

]
;

A12 (x̄) =

⎡⎢⎢⎢⎢⎣

0 0
k1𝜌2(x1)x6 − k1𝜌1(x1)x5 −k1𝜌2(x1)x5 − k1𝜌1(x1)x6

−k7𝜌2(x1) − k8𝜌1(x1)x2 k7𝜌1(x1) − k8𝜌2(x1)x2

k8𝜌2(x1)x2 − k7𝜌1(x1) −k7𝜌2(x1) − k8𝜌1(x1)x2

⎤⎥⎥⎥⎥⎦
;

AT
21 (x̄) =

⎡⎢⎢⎢⎢⎣

0 0
k4

(
𝜌1(x1)x5 − 𝜌2(x1)x6

)
k4

(
𝜌2(x1)x5 + 𝜌1(x1)x6

)
k5𝜌2(x1) − k4𝜌1(x1) −k4𝜌2(x1) − k5𝜌1(x1)
k4𝜌2(x1) + k5𝜌1(x1) k5𝜌2(x1) − k4𝜌1

⎤⎥⎥⎥⎥⎦
;

B1 (x̄) =
⎡⎢⎢⎢⎣

0 0
0 0

−k10 0
0 −k10

⎤⎥⎥⎥⎦
; B2 (x̄) =

[
0 0
0 0

]
.

Note that for the case of the LIM system A11 (x̄),
A22 (x̄), B1 (x̄), and B2 (x̄) are constant matrices, and
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A12 (x̄) = A12

(
x̄1

)
and A21 (x̄) = A21

(
x̄1

)
. Hence, being

that the usage of Theorem 1 or Corollary 1 will depend on
the nonlinear system and the obtained SDCF form, the
corresponding factorization for the LIM allows the real-
ization of the reduced-order observer in accordance with
Corollary 1, where it is required to fulfill (16) to guaran-
tee the observer convergence (giving a priori values for L̄
and 𝜅 > 0 and finally determining W > 0). On the other
hand, the values for the parameters 𝛾1, 𝛾2 and 𝛾3 in (15)
are not required for the LIM observer design since there
are no differences between the corresponding matrices.

For the reduced-order observer, only the state esti-
mation for x̄2 is required, that is, the fluxes 𝜆𝛼 and 𝜆𝛽 ,
which come from (12) as ̂̄x2 = z̄ + L̄ ym, where z̄ is the
solution of (11).

4.3.2 Real-time results of the reduced-order observer

Fig. 4 shows the convergence of the observer fluxes
to the linear induction motor fluxes. The gain used for
the estimator convergence is

L̄ =
[

l11 l12 l13 l14
l21 l22 l23 l24

]
(26)

=
[

0 0 0.0001 0.0001
0 0 0.0001 −0.0001

]
(27)

which is selected by numerically analyzing the
state-dependent eigenvalues for

(
A22 (x̄) − L̄A12 (x̄)

)
,

where using the plant parameters result in

eig = −124.086 ± 0.5
√

13.6235 + 0.0141566 x2
2

which for the operation range of the LIM, the velocity
x2 (in m∕s) is low enough to guarantee the eigenvalues
negativeness. In addition, since for the LIM the observer

Fig. 4. Estimation for fluxes 𝜆𝛼 and 𝜆𝛽 . [Color figure can be
viewed at wileyonlinelibrary.com]

design is based on Corollary 1, and by using the gain L̄,
condition (16) can be verified by selecting (for simplicity)
W = I2 and 𝜅 = 1, which must satisfy

(
A22 (x̄) − L̄A12 (x̄)

)
+
(
A22 (x̄) − L̄A12 (x̄)

)T ≤ −I2

(28)

or rewritten as [48]

−
(
A22 (x̄) − L̄A12 (x̄)

)
−
(
A22 (x̄) − L̄A12 (x̄)

)T − I2 ≥ 0
(29)

that is, the state-dependent (29) must be a symmetric and
positive semidefinite matrix ∀ x̄, for which equivalently
its two leading principal minors must be nonnegative ∀ x̄.
The minors are numerically evaluated in time and dis-
played in Fig. 5, which indeed become strictly positive,
that is, Minor 1 > 0 and Minor 2 > 0. Therefore (16)
is fulfilled, guaranteeing the observer convergence [49].
Notice that because of the state-dependence in the corre-
sponding matrices, an algebraic verification of (29) is not
possible. In this paper such a verification is numerically
carried out in time along the system motion.

Fig. 6 displays the control signals used for evaluat-
ing the convergence of the proposed observer, where the
frequency of the signals is varied to illustrate the effec-
tiveness of the observer. Note that for the LIM observer
design, in accordance with Corollary 1, the norm of the
control input is not required to achieve the observer con-
vergence since Bi

(
̂̄x
)
= Bi (x̄) is a constant matrix. For

systems where Bi

(
̂̄x
) ≠ Bi (x̄) and an observer-based

optimal controller is synthesized, the control signals will
remain bounded, which is established in the stability
analysis given in the proof of Theorem 2 in [11].

Fig. 5. Minors’ positiveness verification. [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. 6. Input signals for the reduced-order observer
evaluation. [Color figure can be viewed at
wileyonlinelibrary.com]

Fig. 7. Optimal tracking for the position control. [Color
figure can be viewed at wileyonlinelibrary.com]

4.4 Real-time results of the observer-based optimal
tracking controller for the LIM

Since the synthesized optimal controller requires
the whole state feedback

(
qm, v, 𝜆𝛼, 𝜆𝛽, i𝛼, i𝛽

)
, the

unmeasured variables
(
𝜆𝛼, 𝜆𝛽

)
are obtained from the

reduced-order observer.
The results of the position and the flux squared

module control are shown in Figs. 7 and 8, respectively,
where the tracking for these controlled outputs to the
desired references are achieved by using the proposed
observer and the optimal control scheme. The reference
for the position control r1 = x1,Ref is a time-varying
signal as depicted in Fig. 7, whereas the reference for
flux squared module r2 is r2 = FluxRef = 0.2 Wb2,
as displayed in Fig. 8. From the real-time results, it
can be noted that the control objectives are achieved in
spite of possible parameters’ uncertainties, which gen-
erally exist in real systems. In this sense, the obtained
results could be improved by considering a robust con-
trol scheme against parameter uncertainties and external
disturbances; moreover, filters for the measured variables
could be included to reduce the noise affecting such
variables.

Fig. 8. Optimal tracking for the flux squared module. [Color
figure can be viewed at wileyonlinelibrary.com]

The performance of the proposed reduced-order
observer-based optimal controller is evaluated in
real-time in the LIM prototype. Matrices Q and R for
the optimal controller are Q = diag {100000, 50000}
and R = diag {0.001, 0.001}, respectively, where these
values are selected for achieving an adequate trajectory
tracking. Note that matrix Q is a parameter weighting
the time evolution of the tracking error e, while R is a
matrix weighting the control effort expenditure; hence
these matrices are used to establish a trade-off between
the tracking performance and the control effort. If more
importance is given to the tracking performance, one
can select a higher value for Q or reduce R [27], that is,
large values for Q will improve the time of the variables’
convergence to the desired references, nevertheless, a
large control effort will be required; on the other hand,
large values for R will minimize the control effort, how-
ever, the system variables’ time response will be slow and
the tracking could not be adequately performed.

V. CONCLUSIONS

This contribution presents a reduced-order
observer for SDCF nonlinear systems in order to esti-
mate the unmeasured variables. The estimated states
can be used for control purposes such as synthesis of
state feedback controllers. The reduced-order observer is
illustrated via the implementation in real-time for a lin-
ear induction motor, whereby using the estimated states,
the trajectory tracking to a desired reference for position
and flux squared module is achieved.

REFERENCES

1. Alanis, A. Y., E. Rangel, J. Rivera, N. Arana-Daniel,
and C. Lopez-Franco, “Particle swarm based
approach of a real-time discrete neural identifier

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/
http://onlinelibrary.wiley.com/


Asian Journal of Control, Vol. 21, No. 4, pp. 1–12, July 2019

for linear induction motors,” Math. Probl. Eng.,
Vol. 2013, pp. 1–9 (2013). https://doi.org/10.1155/
2013/715094.

2. Banks, H. T., S. C. Beeler, and H. T. Tran, “State esti-
mation and tracking control of nonlinear dynamical
systems,” Int. Series of Numerical Math., Vol. 143,
No. 1, pp. 1–24 (2003).

3. Basin, M. V., New Trends in Optimal Filtering and
Control for Polynomial and Time-Delay Systems,
Springer-Verlag, Berlin (2008).

4. Friedland, B., Control System Design: An Introduc-
tion to State-Space Methods, McGraw-Hill, New
York (1986).

5. Stengel, R. F., Optimal Control and Estimation,
Dover Publications, Inc, New York (1994).

6. Sundarapandian, V., “Reduced order observer design
for nonlinear systems,” Appl. Math. Lett., Vol. 19,
pp. 936–941 (2006).

7. Cimen, T., “State-dependent Riccati equation
(SDRE) control: A survey,” Proc. IFAC 17th World
Congr., Seoul, Korea, pp. 3761–3775 (2008).

8. Banks, H. T., B. M. Lewis, and H. T. Tran, “Non-
linear feedback controllers and compensators: A
state-dependent Riccati equation approach,” Com-
put. Optim. Appl., Vol. 37, No. 2, pp. 177–218 (2007).

9. Chang I. and S.-J. Chung, “Exponential stabil-
ity region estimates for the state-dependent Riccati
equation controllers,” Proc. 48th IEEE Conf., Shang-
hai, China, pp. 1974–1979 (2009).

10. Erdem, E. B., “Analysis and real-time implementa-
tion of state-dependent Riccati equation controlled
systems,” Ph.D. thesis, University of Illinois at
Urbana-Champaign, Urbana, Illinois (2001).

11. Ornelas-Tellez, F., J. J. Rico, and R. Ruiz-Cruz, “Op-
timal tracking for state-dependent coefficient factor-
ized nonlinear systems,” Asian J. Control, Vol. 16,
No. 3, pp. 890–903 (2014).

12. Ornelas-Tellez, F., J. J. Rico-Melgoza, and
J. J. Rincon-Pasaye, “Optimal control for
non-polynomial systems,” J. Frankl. Inst., Vol. 350,
No. 4, pp. 853–870 (2013).

13. Parrish, D. K. and D. B. Ridgely, “Control of an
artificial human pancreas using the SDRE method,”
Proc. IEEE Amer. Control Conf., Albuquerque, NM,
pp. 1059–1060 (1997).

14. Pukdeboon, C., “Optimal output feedback con-
trollers for spacecraft attitude tracking,” Asian J.
Control, Vol. 15, No. 5, pp. 1284–1294 (2013).

15. Ornelas-Tellez, F., J. J. Rico, E. Espinosa-Juarez,
and E. N. Sanchez, “Optimal and robust control in
DC microgrids,” IEEE Trans. Smart Grid, Vol. PP,
No. 99, pp. 1–12 (2017). https://doi.org/10.1109/TSG.
2017.2690566.

16. Cimen, T., “Survey of state-dependent Riccati
equation in nonlinear optimal feedback control syn-
thesis,” J. Guid., Control, Dyn., Vol. 35, No. 4,
pp. 1025–1045 (2012).

17. Mracek, C. P., J. R. Cloutier, and D’Souza. C. A.,
“A new technique for nonlinear estimation,” Proc.
IEEE Int. Conf. Control Applicat., Dearborn, MI,
pp. 338–343 (1996).

18. Hammett, K. D., C. D. Hall, and D. B. Ridgely,
“Controllability issues in nonlinear state dependent
Riccati equation control,” J. Guid. Control Dyn.,
Vol. 21, No. 5, pp. 767–773 (1998).

19. Pearson, J. D., “Approximation methods in optimal
control I. Sub-optimal control,” J. Electron. Control,
Vol. 13, No. 5, pp. 453–465 (1962).

20. Vidyasagar, M., Nonlinear Systems Analysis, SIAM:
Society for Industrial and Applied Mathematics,
USA (2002).

21. Cloutier, J. R., “State-dependent Riccati equation
techniques: An overview,” Proc. 1997 Amer Control
Conf, Albuquerque, NM, pp. 932–936 (1997).

22. Liang, Y.-W. and L.-G. Lin, “Analysis of SDC
matrices for successfully implementing the SDRE
scheme,” Automatica, Vol. 49, No. 10, pp. 3120–3124
(2013).

23. Chen, C.-T., Linear System Theory and Design,
Oxford University Press, New York (1999).

24. Kailath, T., Linear Systems, Prentice-Hall, Inc,
Englewood Cliffs, NJ (1980).

25. Luenberger, D. G., “Observing the state of a linear
system,” IEEE Trans. Military Electronics, Vol. 8,
No. 2, pp. 74–80 (1964).

26. Anderson, B. D. O. and J. B. Moore, Optimal
Control: Linear Quadratic Methods, Prentice-Hall,
Englewood Cliffs, NJ (1990).

27. Athans, M. and P. L. Falb, Optimal Control: An
Introduction to the Theory And Its Applications,
Dover Publications, Inc, Mineola, NY (2007).

28. Alexis, K., G. Nikolakopoulos, and A. Tzes, “On
trajectory tracking model predictive control of an
unmanned quadrotor helicopter subject to aerody-
namic disturbances,” Asian J. Control, Vol. 16, No. 1,
pp. 209–224 (2014).

29. Haessig D. A. and B. Friedland, “State dependent
differential Riccati equation for nonlinear estimation
and control,” 15th IFAC World Congress, Barcelona,
Spain, pp. 8611–8617 (2002).

30. Smidl, V., S. Janous, L. Adam, and Z. Peroutka, “Di-
rect speed control of PMSM drive using SDRE and
convex constrained optimization,” IEEE Trans. Ind.
Electron., Vol. 65, No. 1, pp. 532–542 (2018).

31. Batmani, Y., M. Davoodi, and N. Meskin,
“Event-triggered suboptimal tracking controller

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd

https://doi.org/10.1155/2013/715094
https://doi.org/10.1155/2013/715094
https://doi.org/10.1109/TSG.2017.2690566
https://doi.org/10.1109/TSG.2017.2690566


F. Ornelas-Tellez et al.: Reduced-order Observer for SDCF Nonlinear Systems

design for a class of nonlinear discrete-time sys-
tems,” IEEE Trans. Ind. Electron., Vol. 64, No. 10,
pp. 8079–8087 (2017).

32. Tahirovic, A. and S. Dzuzdanovic, “A globally sta-
bilizing nonlinear model predictive control frame-
work,” IEEE 55th Conf. Decision and Control
(CDC), Las Vegas, NV, pp. 4033–4039 (2016).

33. Lin, L. G., J. Vandewalle, and Y. W. Liang, “Analyti-
cal representation of the state-dependent coefficients
in the SDRE/SDDRE scheme for multivariable sys-
tems,” Automatica, Vol. 59, pp. 106–111 (2015).

34. Cimen, T., “Systematic and effective design of non-
linear feedback controllers via the state-dependent
Riccati equation (SDRE) method,” Annu. Rev. Con-
trol, Vol. 34, pp. 32–51 (2010).

35. Basin, M., A. G. Loukianov, and M.
Hernandez-Gonzalez, “Optimal controller for
stochastic polynomial systems with state-dependent
polynomial input,” Circuits, Syst. Signal Process.,
Vol. 30, pp. 1463–1479 (2011).

36. Fleming, W. H. and R. W. Rishel, Deterministic and
Stochastic Optimal Control, Applications of Math-
ematics, Vol. 1, Springer-Verlag, New York, NY
(1975).

37. Boldea, I. and S. A. Nasar, Linear Electric Actu-
ators and Generators, Cambridge University Press,
Cambridge, Mass (1997).

38. Gieras, J. F., Linear Inductions Drives, Oxford Uni-
versity Press, Oxford (1994).

39. Takahashi, I. and Y. Ide, “Decoupling control of
thrust and attractive force of a LIM using a space vec-
tor control inverter,” IEEE Trans. Ind. Appl., Vol. 29,
No. 1, pp. 161–167 (1993).

40. LabVolt, LabVolt 8228 User Manual (2005).
41. Benitez, V. H., A. G. Loukianov, and E. N. Sanchez,

“Neural identification and control of a linear induc-
tion motor using an 𝛼-𝛽 model,” Vol. 5, Proc. Amer.
Control Conf., Denver, CO, pp. 4041–4046 (2003).

42. Marino, R. and P. Tomei, Nonlinear Control Design:
Geometric, Adaptive and Robust, Prentice Hall, Hert-
fordshire (1996).

43. Ruiz-Cruz, R., E. N. Sanchez, F. Ornelas-Tellez,
A. G. Loukianov, and R. G. Harley, “Particle swarm
optimization for discrete-time inverse optimal con-
trol of a doubly-fed induction generator,” IEEE T.
Cybern., Vol. 43, No. 6, pp. 1698–1709 (2013).

44. Villafuerte, A., F. Ornelas-Tellez, and J. J.
Rico-Melgoza, “Adaptive polynomial identification
and robust optimal tracking control for nonlinear
systems,” Proc. 12th Int. Conf. Elect. Eng. Comput-
ing Sci. and Autom. Control (CCE), Mexico City,
Mexico, pp. 1–6 (2015).

45. Zhang, L., X. Wei, and H. Zhang, “Disturbance
observer-based elegant anti-disturbance control for
stochastic systems with multiple disturbances,”
Asian J. Control, Vol. 19, pp. 1966–1976 (2017).

46. Sun, T., J. Zhang, and Y. Pan, “Active disturbance
rejection control of surface vessels using compos-
ite error updated extended state observer,” Asian J.
Control, Vol. 19, No. 5, pp. 1802–1811 (2017).

47. Galvan-Guerra, R., L. Fridman, R. Iriarte, J. E.
Velazquez-Velazquez, and M. Steinberger, “Integral
sliding-mode observation and control for switched
uncertain linear time invariant systems: a robusti-
fying strategy,” Asian J. Control, pp. 1–15 (2017).
https://doi.org/10.1002/asjc.1661.

48. Cloud, M. J., B. C. Drachman, and L. P. Lebe-
dev, Inequalities with Applications to Engineering,
Springer, New York (2014).

49. Khalil, H. K., Nonlinear Systems, Prentice-Hall,
Upper Saddle River (1996).

VI. APPENDIX A

6.1 Proof of Theorem 1

Since A12 (x̄) and A22 (x̄) only depend on the mea-
sured variables x̄1, then A12 (x̄) = A12

(
̂̄x
)
= A12

(
x̄1

)
and

A22 (x̄) = A22

(
̂̄x
)
= A22

(
x̄1

)
; hence the error dynamics

(14) becomes

ė =
(
A22

(
x̄1

)
− L̄A12

(
x̄1

)) (
x̄2 −

(
z̄ + L̄ym

))
+
[(

A21 (x̄) − A21

(
̂̄x
))

+ L̄
(
A11 (x̄) − A11

(
̂̄x
))]

ym

+
[(

B2 (x̄) − B2

(
̂̄x
))

+ L̄
(
B1 (x̄) − B1

(
̂̄x
))]

u

=
(
A22

(
x̄1

)
− L̄A12

(
x̄1

))
e

+
[(

A21 (x̄) − A21

(
̂̄x
))

+ L̄
(
A11 (x̄) − A11

(
̂̄x
))]

ym

+
[(

B2 (x̄) − B2

(
̂̄x
))

+ L̄
(
B1 (x̄) − B1

(
̂̄x
))]

u.

(30)

In order to analyze the stability of (30), consider the
Lyapunov function

V (e) = eT We, W = W T > 0. (31)

By taking the time derivative of (31) and after alge-
braic simplifications, the following is obtained:
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V̇ (e) = ėT We + eT Wė

= eT
[
W

(
A22 (x̄) − L̄A12 (x̄)

)
+
(
A22 (x̄) − L̄A12 (x̄)

)T
W

]
e

+ 2eT W
[ (

A21 (x̄) − A21

(
̂̄x
))

+ L̄
(
A11 (x̄) − A11

(
̂̄x
)) ]

ym

+ 2eT W
[ (

B2 (x̄) − B2

(
̂̄x
))

+ L̄
(
B1 (x̄) − B1

(
̂̄x
)) ]

u.

(32)

By using (15), (16) and (17) in (32), it results in

V̇ (e) ≤ −𝜅 ‖e‖2 + 2𝛾1 ‖W‖ ‖e‖2

+ 2(𝛾2 + 𝛾3 ‖u‖) ‖W‖ ‖e‖2

= −
[
𝜅 − 2

(
𝛾1 + 𝛾2 + 𝛾3 ‖u‖) ‖W‖] ‖e‖2

with 𝜅 > 2
(
𝛾1 + 𝛾2 + 𝛾3 ‖u‖) ‖W‖. Therefore, since V̇ (e)

is a negative definite function, the estimation error is
asymptotically stable [49].

VII. APPENDIX B

7.1 Proof of Corollary 1

It can be directly derived from the proof given for
Theorem 1. By considering Aij (x̄) = Aij

(
x̄1

)
and Bi (x̄) =

Bi

(
x̄1

)
, (30) reduces to

ė =
(
A22

(
x̄1

)
− L̄A12

(
x̄1

))
e

and by using (31) as a Lyapunov function, (32) results in

V̇ (e) = −𝜅 ‖e‖2

with 𝜅 > 0, which is a negative definite function. Thus, e
is asymptotically stable.
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