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Abstract: Current requirements for ensuring data exchange over the internet to fight against security
breaches have to consider new cryptographic attacks. The most recent advances in cryptanalysis are
boosted by quantum computers, which are able to break common cryptographic primitives. This
makes evident the need for developing further communication protocols to secure sensitive data.
Zero-knowledge proof systems have been around for a while and have been considered for providing
authentication and identification services, but it has only been in recent times that its popularity
has risen due to novel applications in blockchain technology, Internet of Things, and cloud storage,
among others. A new zero-knowledge proof system is presented, which bases its security in two
main problems, known to be resistant, up to now, against quantum attacks: the graph isomorphism
problem and the isomorphism of polynomials problem.

Keywords: graph isomorphism; isomorphism of polynomials; interactive proof system; multivariate
cryptography; zero-knowledge proof

1. Introduction

The increasing use of powerful electronic devices and the availability of networks that provide
ubiquitous and high-performance connectivity allow applications to transfer huge volumes of data
in brief periods of time. Several transactions and secure connections are performed using reliable
schemes of authentication and privacy based on complicated mathematical problems, which have
remained unsolved up to now. The starting point of secure communications requires previous secret
sharing or authentication, using for this purpose, public key cryptography (PKC). Though several
cryptographic algorithms exist, only a few protocols are used in real-world applications due to their
proven resistance and easy implementation: the well known procedure due to Rivest-Shamir-Adleman
(RSA) [1], based on the factorization problem, and the Digital Signature Standard (DSS) [2] based
on the discrete logarithm problem on finite groups. These algorithms are the base of several digital
signature techniques, and authentication and identification protocols, which are commonly used for
e-commerce, banking transactions, and government services, among others, and their applications
have been increasing with the introduction of multifactor authentication and cryptocurrencies.

The rapid development of cryptanalysis techniques and quantum computers endanger these
security measures, with the most alarming threat being the existence of an algorithm that can solve the
factorization problem efficiently, provided a quantum computer can ever be built [3]. These issues
make clear that new techniques must be studied and developed in preparation for possible realizations
of these threats. Recently, zero-knowledge proofs (ZKP) have been considered as an alternative to
design authentication and identification protocols. Protocols based on ZKP are built upon problems
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which have not been solved yet by quantum computer algorithms; many of them originated from
graph theory and NP-complete problems.

In addition to authentication and identification services, novel technologies (e.g., blockchain and
cryptocoins [4]), which require anonymity services, have demonstrated in ZKP systems, a reliable
technique to prove knowledge of specific data without disclosing details; say, whether an account has
enough credit to buy an item. Current uses have also been reported in the direction of authentication
in cloud storage [5] and Internet of Things (IoT) [6], encouraging the development of these sorts of
protocols.

The method defined in this work produces key pairs from an associated isomorphism between a
pair of graphs. The public key will be given by a system of equations. The private key will consist of a
solution to the system. It will be shown that finding this solution is at least as difficult as finding an
isomorphism between the associated graphs. At present, the fastest algorithm for solving the graph
isomorphism (GI) problem runs in quasi-polynomial time [7]. However, an authentic prover will be
ready to provide a solution efficiently.

2. Related Work

Interactive proof systems were presented by Goldwasser, Micali, and Rackoff [8] as a novel
technique to demonstrate "knowledge" efficiently, in the sense that the verification of such knowledge
should be performed easily. This method involves an exchange of information between two entities:
the prover, which is determined to demonstrate the truthiness of a proposition to a second party,
and the verifier,which in turn must be convinced of the assertion. The parties involved interact in a
challenge-response process until the verifier is ready to decide that the prover’s assertion is correct,
or concludes that the claim is false. Interactive proof systems are said to be zero-knowledge if the
verifier is not able to get any extra information from the interaction process, except the correctness of
the statement. This kind of proof can be used by entities requiring authentication and identification
services: access control or credit card validations, among many others.

One of the most typical examples of ZKP systems bases its security in the difficulty of solving the
graph isomorphism problem (GI) [9]. The main components of this system are:

• The public key: two isomorphic graphs G and H.
• The private key: the pair (G, H) together with an isomorphism φ : G → H.
• The interaction algorithm between Peggy (the prover) and Victor (the verifier):

1. Peggy starts the interaction by providing a random isomorphic graph K.
2. Victor selects a random bit b ∈R {0, 1} and sends it to Peggy.
3. Considering ψ0 = ψ ◦ φ, ψ1 = ψ Peggy must send ψb accordingly.
4. Victor verifies that ψ0(G) = K or ψ1(H) = K depending on the choice of b.

The interaction procedure is based on the commutativity of the diagram shown in Figure 1 and
the difficulty of constructing ψ ◦ φ from ψ alone.

G H

K

φ

ψψ ◦ φ

Figure 1. Composition of graphs.

The GI problem can be easily solved for the average case with state-of-the-art solvers, such as
nauty, Traces [10], saucy [11], and bliss [12], among others. In addition to these results, Babai [7] has
proposed a novel technique reducing the complexity of GI to quasi-polynomial time (with a running
time of 2O((log n)c)). Nevertheless, efforts to construct difficult instances have been made. Contrary to
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what is expected, these cases might not provide suitable cases for cryptographic purposes but lower
complexity bounds by solving particular cases with tuned algorithms.

Grigoriev [13] generalizes the aforementioned construction by studying other mathematical
objects possessing the commutativity property shown in Figure 1. This allows considering
transformations with similar behaviour, such as homomorphisms and endomorphisms in group
and ring theory. The required characteristics to obtain a resistant protocol are:

• that transformations φ and ψ are difficult to invert.
• The possibility of obtaining ψ ◦ φ easily from φ and ψ.

The ZKP system based on GI is compliant with these restrictions, but further problems are
introduced with similar characteristics, mainly related to graph theory, such as the subgraph problem
or the colorability problem, and problems concerning group and ring endomorphisms, among others.
Some of these problems are known to be NP-hard, which provides an advantage over the GI problem,
whose membership to the NP-complete group is currently unknown, but expected to be false.

Later, Patarin [14] introduced the Isomorphism of Polynomials Problem (IP), which relates affine
spaces by means of affine transformations. Given two sets of polynomials of the same size, we say that
both sets are isomorphic if there are affine transformations that define a bijection from one set into the
other. Formally, the IP problem is stated as follows:

Definition 1. Consider two vector spaces Fm and Fn of dimensions m and n, respectively, over a finite field F
and two quadratic transformations F = ( f1, . . . fm), F = (g1, . . . , gm). Each fi, gi is a quadratic polynomial. F
and F are isomorphic if there are S : Fm → Fm and T : Fn → Fn such that F = S ◦ F ◦ T.

The composition of affine transformations is itself an affine transformation. Thus, the composition
of isomorphisms can be defined as straightforward. The original scheme considers two affine
transformations S, T, but a simplification which consists of discarding one of them (or equivalently,
setting a transformation as the identity) leads to defining the IP on one or two secrets (IP1s and IP2s
correspondingly). The proposed authentication scheme is very similar to that defined for GI.

Both IP1s and IP2s have been considered for a new brand of cryptographic primitives known as
multivariate cryptography [15,16]. Theses primitives are based on theMQ problem, which consists
of finding a common solution of a set of polynomials in several variables in a given vector space
(commonly, over a finite field Fq). A traditional procedure for key generation in multivariate public
key cryptography (MPKC) involves two major phases:

• Private key generation. A set of polynomials F = { f1, . . . , fm} is generated in such a way that
the problem of finding a common root for every fi is easy.

• Public keys derivation. From the private key polynomial set F, we generate a new polynomial set
F = { f 1, . . . , f n}. For this set, the problem of finding a common root must be computationally
difficult. Otherwise, a malicious entity would be able to perform sensitive operations, like
deciphering and digital signing.

The most common construction techniques base their security in the intractability of IP; for this,
the affine transformations S and T must be kept in secrecy since the recovery of the private polynomial
set with knowledge of the affine transforms is a computationally easy task. Further methods for private
key generation can be found in [17].

The origins of MPKC can be traced back to the scheme proposed by Matsumoto and Imai
in [15,16]. The proposed cryptosystem (known as the Matsumoto–Imai (IM) cryptosystem) was broken
a few years later [18]. Since then, many other families of schemes have been proposed, including
the unbalanced oil-vinegar (UOV) [19], the hidden field equations (HFE) [14], and the Rainbow [20]
schemes. Currently, the National Institute of Standards and Technology is working on the development
of quantum-resistant cryptographic standards, many of them based on MPKC [21].
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The rapid development of MPKC has also caused advances in algorithms for solving multivariate
systems. These provide very useful cryptanalytic attacks that, according to the target, can be classified
into two main groups:

• Ciphertext decryption. In this case the primary goal is to get the original plaintext from the
captured ciphertext. These attacks make use of polynomial system solvers such as the Buchberger
algorithm [22] to compute Groebner bases. On each new ciphertext obtained, the algorithm
must be executed.

• Private key recovery. The private key consists of the private set F and the transformations S1, S2.
If this information is disclosed, every ciphertext ciphered with the disclosed key is vulnerable.
Examples of these algorithms are: high rank, MinRank, and separation of oil and vinegar [23],
VI.5.4.

Up till now, the most reliable algorithms for solving general polynomial systems have been those
based on the Buchberger algorithm, which has an exponential running time [22], even for the average
case. Additional aspects regarding asymptotic studies on graphs and Groebner bases are provided
in [24] and [25].

3. Mathematical Background

In this section, we provide a brief introduction to the basic concepts used throughout this work.

3.1. Graphs

A graph is a pair (V, E), where V = {v1, . . . , vn} is a set of n elements—the vertices; and E is a
subset of (V

2) = {e ⊂ V| #e = 2}, the edges. The order and size of G are the cardinalities of the sets V
and E, respectively. Two different vertices u1, u2 ∈ V are adjacent if they are connected by an edge.
Analogously, two different edges e1, e2 ∈ E are adjacent if they share one and only one vertex. The
graph G = (V, E) defined by E = {vivj ∈ (V

2) | vivj 6∈ E} is the complementary graph of G. This consists
of pairs of non-adjacent vertices.

If two disjoint subsets V1, V2 ⊂ V exist such that V1
⋃

V2 = V and such that every edge has
vertices in both sets V1 and V2, then the graph is said to be bipartite. Furthermore, G is complete bipartite
provided that every vertex in V1 is connected to every vertex in V2 and vice versa.

Now, consider two graphs G = (U, D) and H = (V, E). Consider a bijections of sets φ : U → V
that preserves edges; i.e., if {u, v} ∈ D implies {φ(u), φ(v)} ∈ E. The φ is an isomorphism between
G and H, and G and H are said to be isomorphic, denoted G ≈ H. The graph isomorphism problem
is defined as the task of finding an isomorphism between G and H, or deciding that they are not
isomorphic. Formally, GI can be defined as follows.

DECISION PROBLEM

Instance: Two graphs G = (U, D), H = (V, E).

Solution:

{
1 If there is an isomorphism φ : G → H
0 Otherwise.

SEARCH PROBLEM

Instance: Two graphs G = (U, D), H = (V, E).
Solution: Either a proof that H and G are not isomorphic or the isomorphism φ : G → H.

Finally, a matching in a graph G is a subset M ⊆ E with the property that no to edges e1, e2 ∈ M
are adjacent. The matching is perfect if, in addition, every vertex of G is an paired by an edge of M.

3.2. Polynomial Ideals and Algebraic Sets

Consider the finite field of q elements Fq and the ring of polynomials in n variables over Fq,
denoted R = Fq[X1, . . . , Xn]. A subset I ⊂ R is an ideal if
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• For every f , g ∈ I, f + g ∈ I;
• For every f ∈ I, h ∈ R the product h f ∈ I.

Then, considering a finite set of polynomials F = { f1, . . . , fm} ⊂ R, we can define the ideal
generated by F as follows

(F) = {h1 f1 + . . . + hm fm|hi ∈ R, i = 1, . . . , m}.

A common root for the polynomials fi for i = 1, . . . , m is also a root for any f ∈ (F). The zero-set
for the ideal I, denoted VI , consists of all the points (x1, . . . , xn) ∈ Fn

q such that f (x1, . . . , xn) = 0 for
every f ∈ I. By considering an algebraic extension of the base field Fq, the zero-set is known as the
algebraic set of I.

We can now formalize MQ as a decision problem. Additionally, we state the related
search problem.

DECISION PROBLEM.
Instance: An ideal I ⊂ Fq[X1, . . . , Xn].

Solution:

{
1 If VI 6= ∅;
0 Otherwise.

SEARCH PROBLEM

Instance: An ideal I ⊂ Fq[X1, . . . , Xn].
Solution: Either a proof that VI = ∅ or a point x ∈ Fn

q such that x ∈ VI .

A solution to the search problem provides a solution to the decision problem immediately. If we
are able to find a solution for the polynomial system f1 = . . . = fm = 0 we conclude that VI 6= ∅. This
means that solving the search problem is at least as difficult as solving the decision problem, which is
known to be NP-complete.

As mentioned before, any solution for a set of polynomials is also a solution for the ideal generated
by that set. Most of the system solvers work based on this fact, by finding a set of "representatives"
with better properties, making the resolution task easier. Finding these representatives has been
already explored by Buchberger, who proposed the construction of the so-called Groebner bases. We
can mention improved versions of the Buchberger algorithm, such as F4 and F5. They have been
successful in attacking cryptographic schemes, such as the HFE and the Matsumoto–Imai [26], and
some variations of UOV [27]. Despite these efforts, the complexity of these algorithms, even in average
instances ofMQ, is fully exponential [28].

3.3. Zero-Knowledge Proof Systems

Some handy cryptographic tools used for authentication and identification services are
zero-knowledge proofs. A basic description of such systems consists of two parts: the verifier performs
a series of questions to the prover, who must answer correctly in each round to convince the verifier.
The prover will be capable of answering correctly on each round only if he has legitimate information.

For this process to be securely implemented, some characteristics regarding the interaction of
the involved parties are desirable. The whole verification process should be computationally efficient
for an authentic verifier, whereas it must be infeasible for an unauthentic prover to impersonate the
authentic one. Furthermore, no information that allows a malicious verifier to reveal the prover’s
secret can be gathered, though this is commonly relaxed to "no statistically significant information."
The following points summarize the desirable characteristics of a ZKP system:

• Completeness. An authentic prover will always be accepted by an honest verifier.
• Soundness. Upon interacting with a non-authentic prover, the verifier will reject it with a very

high probability.
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• Zero-knowledge. A malicious verifier is not capable of getting any extra information from the
challenge-response procedure, other than the correctness of the assertion.

This means that a verifier will always accept an authentic prover. However, a malicious prover
has a chance to impersonate an authentic one, but with very small probability.

4. Construction of the Polynomial System

We proceed by developing the construction of the polynomial set based on an isomorphism
between graphs.

Consider two isomorphic graphs G = (U, D) and H = (V, E) of order n and size e. Denote by
KU,V the complete bipartite graph on the vertex set U

⋃
V. It is possible to obtain a perfect matching

M in the graph KU,V by choosing edges uivk, ujvl if and only if both uiuj and vkvl are edges in their
respective graphs. In other words:

(i) If uiuj ∈ D and vkvl 6∈ E, edges uivk and ujvl cannot lie in M simultaneously.
(ii) If vkvl ∈ E and uiuj 6∈ D, edges uivk and ujvl cannot lie in M simultaneously.

A perfect matching M gathered in this fashion can also be regarded as a bijection φ of the vertices
of U and V, defining an isomorphism between their corresponding graphs. The aforementioned
conditions are an equivalent way to assert:

uiuj ∈ D ⇐⇒ φ(ui)φ(uj) ∈ E.

What has been explained can be observed in Figure 2.

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

X4,4

(a)

u2 v2

u1 v1

u3 v3

u4 v4

X2,2

X4,3

(b)

Figure 2. Process of generating the polynomial set associated to graph isomorphism. (a) An
isomorphism between G and H can be seen as a perfect matching in the graph KU,V , preserving
adjacencies between G and H. (b) The edges u2v2 and u3v4 cannot belong simultaneously to M because
u2u3 ∈ D, but v2v4 /∈ E. The polynomial X2,2X3,4 is added to the ideal I.

Now, we translate the notion of isomorphism between graphs to a strictly algebraic language.
The idea is to perform a proper reduction from GI toMQmotivated by conventional reductions of
several problems in graphs to Boolean quadratic polynomials [29,30]. For this, we need to consider a
set of n2 variables, denoted {Xi,k} for i, k = 1, . . . , n. The first set of polynomials to append, restrict
any possible solution to values in the set {0, 1}. The polynomials are defined as follows:

X2
i,k − Xi,k for i, k ∈ {1, . . . , n}. (1)
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These could be discarded if the restriction is made clear by considering only solutions over the
binary vector space Fn

2 . The next batch of polynomials restricts the zero-set to solutions that represent
a perfect matching; i.e., exactly one vertex ui from U is connected to one vertex of V and vice versa.
This associates the solutions to the existence of a perfect matching M.

n

∑
k=1

Xi,k − 1 for i = 1, . . . n (2)

n

∑
i=1

Xi,k − 1 for k = 1, . . . n.

The last set of polynomials guarantee that the solution is related exclusively to the isomorphism
arising from the perfect matching:

Xi,kXj,l for every i, j, k, l which satisfy(
uiuj /∈ D ∧ vkvl ∈ E

)
∨(

uiuj ∈ D ∧ vkvl /∈ E
)

. (3)

The construction of the polynomial set is now complete.

5. Zero-Knowledge Protocol

Our next goal is to employ the theory developed in Section 4 to established the announced ZKP.
Let us start by generating a graph G and a random isomorphism φ, which can be obtained as a

random bijection of its vertex set. In this way, we create a second graph H which is isomorphic to G
with isomorphism φ. Now, let F0 be the polynomial system resulting from the process of construction
shown in Section 4. A solution x0 for the system F0 is found by setting Xi,k = 1 if uivk ∈ M, and
Xi,k = 0 otherwise. The polynomial set F0 will be public and is used as the public key. The private key
will be the pair (F0, x1).

The interaction process starts by generating a second isomorphic graph K, which can be performed
by applying a random bijection ψ on the vertex set of H. Knowing the graph H and the applied
permutation allows one to obtain a second polynomial set F1 and a its corresponding solution x1. The
following diagram (Figure 3) allows visualization of the operation performed.

G H K

(F0,x0) (F1,x1)
Ψ

φ ψ

Figure 3. Graph composition and resulting systems.

Though the pair (F1, x1) can be obtained in the same fashion as the pair (F0, x0), i.e., by computing
the polynomial set related to the corresponding graph isomorphism, a more direct approach consists
of directly applying suitable permutations to the subindices k and l for the variables obtained from the
edges of H and H. In fact, let us define the permutation σφ by σφ(i) = k if φ(ui) = vl . Then, the edge
uiuj ∈ D transforms into edge

φ(ui)φ(uj) = vσφ(i)vσφ(j).
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A similar permutation σψ, dependent on the action ψ, is obtained by relating edges of graph H
and edges of graph K. The set of polynomials fulfilling condition (3) leads to a direct definition of the
set of polynomials corresponding to H and K obtained from the public polynomial set as

Xσφ(i),σψ(k)Xσφ(j),σψ(l). (4)

A solution for the system F1 is provided by applying permutations σφ, σψ to reorder the entries of
the vector x1 in a similar fashion.

Observe that applying the permutation σψ to the subindices of Xi,k is equivalent to applying an
affine transformation T, which might be represented by a matrix with one and only one element with
value 1 on each column and each row (a permutation matrix) defined by

T(i, j) =

{
1 if j = σψ(i)
0 otherwise.

A similar transformation S is related to φ; this time, it is applied on the right side.

S(i, j) =

{
1 If j = σφ(i)
0 Otherwise.

Indeed, S, T can be used to compute the new polynomial (see Ψ(F1) = S ◦ F0 ◦ T) and the new
solution to such a system by x1 = Ψ(x0) = S · x0 · T, which consists of matrix multiplications.

Finally, if instead of using the isomorphism ψ : H → K to obtain the second polynomial system,
the composition γ = ψ ◦ φ is used, we get a third system, constructed by computing the new set
Xi,σγ(k)Xj,σγ(l), which requires a single permutation, and in matrix notation, only the inner affine
transformation T. Since both systems rely on the difficulty of computing a graph isomorphism,
theoretically, any one of them could be used without losing security in the defined protocol.

5.1. Authentication Protocol

The complete authentication protocol is outlined by the following steps, which are performed
between Peggy (the prover) and Victor (the verifier):

Key Generation:

1. Peggy picks a graph G and randomly generates a permutation of the set {1, . . . , n}. This
permutation is used to create the isomorphic graph H together with its isomorphism φ, and
then, the public key F0 using the technique aforementioned. The private key is the pair (F0, x0),
which consists of the public polynomial system together with a solution to the system.

Authentication:

1. Peggy generates a permutation σ for the set {1, . . . , n} at random and computes the polynomial
system F1, which is sent to Victor as a compromise.

2. Victor creates a challenge by selecting at random b ∈ {0, 1}. Victor sends b to Peggy.
3. Once Peggy has received b she must answer accordingly:

• If b = 0, she sends the transformation Ψ to Victor.
• If b = 1, then she sends the solution x1 of F1.

4. According to the value of b Victor performs the following to authenticate Peggy:

• If b = 0, he computes the system F′1 = Ψ(F0) and verifies whether he F′1 = F1.
• If b = 1, he checks whether F1(x1) = 0 or not.
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5.2. Verification of the Protocol

In order to admit the proposed ZKP system as valid, it must fulfill the defining requirements:
completeness, soundness, and zero knowledge.

Completeness. Consider Peggy and Victor as authentic entities. On each iteration, Peggy
generates a pair (Fi, xi) from a random permutation σ of the variables. Both can be computed efficiently
by her, since she already has knowledge of the original solution (F0, x0), and subsequently, can provide
a correct answer to the challenge.

Soundness. Consider a rogue prover Robert, who wants to deceive Victor by claiming knowledge
of the solution x1. He might proceed in two different ways:

1. He creates a new system from F0 by using any random permutation σ to the variable subindices.
If Victor sends b = 0 Robert will be able to provide Ψ : F0 → F1; however, if b = 1 he will not be
able of compute the solution x1 = Ψ(x0).

2. From a made-up solution x′0, Robert can compute set of polynomials F′0 having x′0 as solution.
Then if Victor sends b = 1, Robert can deceive Victor; on the other hand, if Victor send b = 1,
Robert must provide the transformation Ψ : F0 → F1 which is computed from a valid σ. Since
the problem is strongly related to GI, this will be a difficult task, and for this reason, infeasible.

In any case, the chance of succeeding is 1
2 at each round. After n rounds, the probability is 1

2n ,
which becomes insignificant as n grows.

Zero-Knowledge. Finally, zero-knowledge is provided for the following reasons: having
knowledge of the systems F0 and F1, it is infeasible to compute Ψ or its solution x1 in polynomial time,
since we have built these objects based on difficult tasks: solving the GI problem or the MQ problem.
At every iteration a piece of information is provided. If Ψ is disclosed, it is not possible to compute x0

without knowledge of the solution x1. For the second case, if x1 is exposed, then, unknowing Ψ, it is
not possible to recover x0.

5.3. Possible Attacks

We will consider that a malicious entity, a rogue prover (Robert), wants to play the role of Peggy.
He can try the following strategy.

Robert can flip a coin to obtain a random value r to decide how to proceed. If r = 0, Robert
randomly generates a system F′1 with a given solution that he knows. If Victor challenges with b = 1,
Robert is able to provide the solution, but if b = 0, he will not have the corresponding transformation
Ψ : F0 → F1. Alternatively, if Robert obtains r = 1, he computes a random permutation to obtain a
transformation of the system F0. If Victor challenges with b = 0, Robert will be able to provide the
required transformation, but, on the contrary, if Victor chooses to send b = 1, he will fail to compute a
suitable solution. It has been noted that the probability of cheating with this strategy is insignificant
after n rounds for an n big enough.

Now we suppose that Robert attacks as a malicious verifier, who wants to obtain information
about the secret key, so he plays the role of Victor. He can try asking several times until he can gets
the same set of polynomials twice. This would give hem access to the private key. The first time he
challenges Peggy with b = 0 so he can get the permutation. In subsequent times, he sends b = 1 and
gets the solution to the corresponding system. If the first random permutation is repeated at some
time, Robert can compute the solution to the public system by applying σ−1 to the subindices of the
solution. There are n! different ways of permuting n elements. This makes the strategy infeasible, since
he will have to perform an exponential number of challenges.

Finally, it is possible to solve these problems by breaking the protocol with more
sophisticated tools:

• SolvingMQ. Using a polynomial system solver to find a solution for the polynomial system F1

would extract the private key (or another suitable private key x′1).
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• Solving IP. This is done by computing the affine transformations T and S, that make two
quadratic transformations F and F isomorphic; i.e., F = S ◦ F ◦ T. In our construction, the
permutation applied to subindices can be regarded as a special case of IP where S and T are
permutation matrices.

• Addressing GI. We need to retrieve the initial isomorphic graphs from the polynomial set and
find an isomorphism, which leads to forge a private key.

At present-day, authors are not aware of quantum algorithms solving, efficiently, any of the
forenamed problems.

6. Computational Complexity

An analysis of computational cost of the transformation of the GI instance is performed next.
Observe that, for conditions (1) and (2) every pair (i, k) for i, k ∈ {1, . . . , n}must be considered. This
can be done in O(n2).

The next step consists of including the polynomials required to comply with condition (3). The
following verifications are made:

1. For every uiuj ∈ D, look for the edges vkvl ∈ E. The corresponding polynomials Xi,kXj,l are
added to the system.

2. For every vkvl ∈ E, look for the edges uiuj ∈ D and append the corresponding polynomials
Xi,kXj,l to the system.

To show that the complexity of such transformation is performed in polynomial time, a very
rough upper bound for the size of D can be set to n(n−1)

2 , corresponding to a complete graph. A similar
upper bound can be established for E. The set of polynomials appended in 1 is computed with two
nested loops, the outer one traveling over every edge in D, while the inner loop must visit every

edge in E. Then, the number of steps for this operation is bounded by n2(n−1)2

4 . The second set of
polynomials gathered from E and D can be obtained following analogous arguments. Then, the time
complexity of such an operation is O(n4), which is polynomial on the order of G. Of course, this upper
bound is not reached due to the relation between of the sizes of a graph and its complement, but this is
enough to argue why the construction takes a polynomial number of steps; thus, the reduction of GI to
MQ can performed efficiently.

Toy Example

In this section, the construction of public and private key, together with the transformations
required during the authentication procedure, are shown providing a small example.

We start by showing the construction of a polynomial set. Let us consider the graph G = (U, D),
where U = {1, 2, 3, 4} and D = {(1, 2), (1, 4), (2, 3), (3, 4)}. Consider the permutation

σ =

(
1 2 3 4
1 3 2 4

)
.

After applying σ to the set U, we get the graph H = {V, E} defined by V = U and E =

{(1, 3), (1, 4), (2, 3), (2, 4)}. The complementary graphs G and H are determined by the edge sets
D = {(1, 3), (2, 4)} and E = {(1, 2), (3, 4)} respectively. Graphs G, H and their complements (shown
by dashed lines) are shown in Figure 4.
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1 2

4 3

(a) Graph G

1 3

4 2

(b) Graph H

Figure 4. Isomorphic graphs G, H and complements indicated by dashed lines.

We start by building the polynomial set by fulfilling condition (1), which appends 16 polynomials:

X2
i,j − 1 for i, j ∈ {1, 2, 3, 4}.

As already mentioned, these could replaced by considering solutions over a binary vector
space, something useful when the amount of data to be exchanged faces restrictions. Subsequently,
condition (2) is addressed by considering the polynomials

Xi,1 + Xi,2 + Xi,3 + Xi,4 − 1 for i = 1, 2, 3, 4

X1,j + X2,j + X3,j + X4,j − 1 for j = 1, 2, 3, 4.

Finally, the polynomials obtained from condition (3) are added to the polynomial set.
To understand the process, let us consider an edge in D; say, (1,2). The edges not contained in
H are (1,2) and (3,4), as seen in Figure 4. These edges introduce the polynomials X1,1X2,2 and X1,3X2,4.
The set of polynomials obtain by considering {uiuj ∈ D ∧ vkvl /∈ E} is shown next

X1,1X2,2, X1,1X4,2, X2,1X3,2, X3,1X4,2

X1,3X2,4, X1,3X4,4, X2,3X3,4, X3,3X4,4.

Finally, by considering the edges in G and H, we get another set of eight polynomials:

X1,1X3,3, X1,2X3,3, X2,1X4,3, X3,1X4,2

X1,1X3,4, X1,2X3,4, X2,3X3,4, X3,3X4,4.

A root of these polynomials related to the isomorphism between these graphs can be computed
by letting xi,σ(i) = 1 for i = 1, 2, 3, 4 and zero in other case. Explicitly,

xi,j =

{
1 if (i, j) ∈ {(1, 1), (2, 3), (3, 2), (4, 4)}
0 otherwise

(5)

The polynomial system created with the polynomials here described together with the solution
defined in (5) conform to the public key F0 and the private key (F0, x0).

Proceeding with the iterative procedure between prover and verifier to perform the authentication
step, a new polynomial system and its solution is computed using either a new graph isomorphism
or directly a random permutation σ on the subindices, as shown in Section 5.2. The construction is
similar to what we have done above.
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7. Conclusions and Future Work

A novel, alternative zero-knowledge authentication protocol whose security relies in the difficulty
of solvingMQ and GI has been proposed. A set of polynomials was built in such a way that a solution
is related to an isomorphism between graphs. That way, it is guaranteed that the protocol is at least
as secure as the classical ZKP based uniquely in GI. It has also been shown that the implementation
is computationally feasible. Also, the transformation applied on the polynomial set depends on a
permutation, which makes the computation lightweight. Since most of the information interchanged
at every challenge-response round consists of a set of polynomials, which is a bit string in the order of
O(n4), further research on the possibility of reducing the number of polynomials in the system without
weakening the proof system is desirable to provide a complete implementation of the authentication
protocol. Additionally, it is expected that future research will be done in the direction of providing
difficult instances of GI to be employed in the protocol presented in the current work.

Supplementary operations could be considered to improve the presented system, which would
consist of using general affine transformation S, T instead of permutations alone, as has been remarked
in the authentication protocol presented in Section 5.2. In this case, the systems constructed can be
additionally hardened by performing a more general isomorphism form Ψ(F0) = S ◦ F1 ◦ T, where S
and T are random affine transformations. Observe that the amount of information transferred in each
authentication round grows by using two transformations and non-sparse matrices. A more detailed
study on the hardness of such instances is needed to decide if these modifications are useful.
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