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Let P be a set of n ≥ 4 points in general position in the plane. Consider all the closed straight line segments with
both endpoints in P . Suppose that these segments are colored with the rule that disjoint segments receive different
colors. In this paper we show that if P is the point configuration known as the double chain, with k points in the

upper convex chain and l ≥ k points in the lower convex chain, then k + l−
⌊√

2l + 1
4
− 1

2

⌋
colors are needed and

that this number is sufficient.
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1 Introduction
Throughout this paper, P is a set of n ≥ 4 points in general position in the plane. The edge disjointness
graph, D(P ), of P is the graph whose vertices are all the closed straight line segments with endpoints in
P ; two of which are adjacent in D(P ) if and only if they are disjoint. The edge disjointness graph and
other similar graphs were introduced by Araujo et al. (2005), as geometric analogs of the well known
Kneser graphs. Let m and k be positive integers with k ≤ m/2. We recall that the Kneser graph
KG(m; k) is the graph whose vertices are all the k–subsets of {1, 2, . . . ,m}; two of which are adjacent
if and only if they correspond to disjoint k-subsets.

The chromatic number of a graph G is the minimum number of colors needed to color its vertices so
that adjacent vertices receive different colors; it is denoted by χ(G). Kneser (1956) posed the problem of
finding the chromatic number of the Kneser graph. He conjectured that

χ(KG(n; k)) = n− 2k + 2
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for n ≥ 2k − 1. The upper bound can be shown with simple combinatorial arguments. The lower
bound was proved by Lovász (1978) using tools from algebraic topology (specifically the Borsuk-Ulam
theorem). This is one of the earliest applications of Algebraic Topology to combinatorial problems. For a
nice account of this connection see the book of Matoušek (2003).

Recently, Pach and Tomon (2019) have proved that ifG is the disjointness graph of a family of grounded
x-monotone curves such that ω(G) = k, then χ(G) ≤

(
k+1
2

)
, where ω(G) denotes the clique number of

G. We remark that the family of grounded x-monotone curves play the role of our closed straight line
segments.

Clearly, the chromatic number is a well studied parameter of the Kneser graph and its relatives. A
general upper bound of

χ(D(P )) ≤ min

{
n− 2, n+

1

2
− blog log nc

2

}
was proved by Araujo et al. (2005). They obtained it as follows. Let Cn be a set of n points in convex
position in the plane. Let

f(n) := χ(D(Cn)).

They showed that f(n) ≤ n− blog2 nc
2 . Erdös and Szekeres (1935) proved that P has a subset of at least

m = blog2(n)/2c points in convex position. The segments with endpoints in this subset are colored using
f(m) colors; the remaining segments are colored by deleting the remaining points one by one and in the
process coloring all the segments with this point as an endpoint with the same new color.

The exact value of f(n) has been computed. It is now known that

f(n) = n−

⌊√
2n+

1

4
− 1

2

⌋
. (1)

Indeed, Fabila-Monroy and Wood (2011) showed that the expression on the right hand side of Eq. (1)
is a lower bound for f(n); and Jonsson (2011) established Eq. (1) by proving that such an expression is
also an upper bound for f(n). Repeating the above arguments, we have that

χ(D(P )) ≤ n−

⌊√
log n+

1

4
− 1

2

⌋
.

As far as we know {Cn}∞n=1 is the only infinite family of point configurations(i) for which the exact
value of the chromatic number of their disjointness graph has been computed. In this paper we compute
the chromatic number of the disjointness graph of another infinite family of point configurations, called
the double chain.

We now define this family. A k-cup is a set of k points in convex position in the plane such that its
convex hull is bounded from above by an edge. Similarly, an l-cap is a set of l points in convex position
whose convex hull is bounded from below by an edge.

Definition 1 For k ≤ l, a (k, l)–double–chain is the disjoint union of two point sets U and L such that:

• U is a k-cup and L is an l-cap;
(i) with different order types, that is.
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• every point of L is below every straight line determined by two points of U ; and

• every point of U is above every straight line determined by two points of L;

In Figure 1 we illustrate a (5, 7)–double–chain and some of its edges. Note that Figure 1 suggests a
natural way to construct a (k, l)–double–chain for any pair (k, l) of admissible integers. Moreover, it is a
routine exercise to show that any two (k, l)–double–chains are the same (up to order type isomorphism).
In view of this, we shall use Ck,l to denote any (k, l)–double–chain, and we often refer to it simply as the
double chain. Each of the geometric properties of Ck,l in next remark follows easily from its definition,
and they will be often used, without explicit mention, in our arguments.

Remark 1 Let U and L be the k–cup and the l–cap of Ck,l, respectively. Then the following holds:

• If U ′ and L′ are proper subsets of U and L, respectively, then the set of points that results from Ck,l

by deleting the points in U ′ ∪ L′ remains a double chain.

• Any straight line segment in the frontier of the convex hull of U (respectively, L) does not cross any
other straight line segment joining two points of L (respectively, U ) See Figure 1.

• Let g be a straight line segment with an endpoint in U and the other one in L, and let f be a straight
line segment joining two points of X ∈ {U,L}. If g and f intersect each other, then they do at a
common endpoint.

The double chain was first introduced by Hurtado et al. (1999) as an example of a set of n points (in
general position) whose flip graph of triangulations has diameter Θ(n2). Since then the double chain has
been used as an extremal example in various problems on point sets, see for example Aichholzer et al.
(2007, 2015, 2008); Cibulka et al. (2009, 2013); Dumitrescu et al. (2013); Garcı́a et al. (2000).

In this paper we show (Theorem 1) that for l ≥ 3

χ(D(Ck,l)) = k + f (l) .

Note that for n even and k = l = n/2, Cn
2 ,n2

is a set of n points for which

χ
(
D
(
Cn

2 ,n2

))
= n−

⌊√
n+

1

4
− 1

2

⌋
≥ f(n) + c

√
n,

for some positive constant c. So, to color the disjointness graph of Cn
2 ,n2

, more colors are needed than to
color the disjointness graph of Cn. We conjecture that for every n ≥ 3, and for every set P of n points

χ(D(P )) ≥ f(n).

2 Preliminary Results and Definitions
Before proceeding we present some results and definitions. A geometric graph is a graph whose vertices
are points in the plane, and whose edges are straight line segments joining these points. For exposition
purposes, we abuse notation and use P to refer to the complete geometric graph with vertex set equal to
P . Thus, χ(D(P )) is the minimum number of colors in an edge-coloring of P in which any two edges
belonging to the same chromatic class cross or are incident.

Let c be a proper vertex coloring(ii) of D(P ) and let S be a chromatic class of D(P ) in this coloring.
(ii) a coloring in which pairs of adjacent vertices receive different colors.
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Fig. 1: This is a drawing of C5,7 and some of its edges. The edge e = xy is in the convex hull of L and is not crossed
by any of remaining edges of C5,7. Thus any edge receiving the same color as e in any proper coloring of D(C5,7)
must be incident with exactly one of x of y.

We say that S is a star if all of its edges share a common vertex, which we call an apex. If S is not a star
then it is a thrackle. See Figure 2.

Fig. 2: A star and two distinct thrackles of the same set of 6 points.

Proposition 1 Let c be an optimal coloring of D(P ) and let S1, . . . , Sr be different stars of c with apices
v1, . . . , vr, respectively. Then

χ(D(P \ {v1, . . . , vr})) = χ(D(P ))− r.

Proof: Suppose that there exists a coloring χ(D(P \ {v1, . . . , vr})) with less than χ(D(P )) − r colors.
Extend this coloring to a coloring of D(P ) by using a new different color for each Si. This produces a
coloring of D(P ) with less than χ(D(P )) colors. 2

Let

g(n) := max

{
i : i ∈ Z+,

(
i

2

)
≤ n

}
. (2)
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Jonsson (2011) observed, in the remark following Theorem 1.1, that

f(n) = n− g(n) + 1.

This implies the following result.

Proposition 2

f(n+ 1) =

{
f(n) if n =

(
i
2

)
− 1 for some positive integer i and

f(n) + 1 otherwise.

Therefore, f(n+ k)− f(n) ≤ k, for every nonnegative integer k.

Proposition 3 In every optimal coloring of D(Cn) there is at most one chromatic class consisting of a
single edge of P .

Proof: Suppose for a contradiction that for some n there exists an optimal coloring c of D(Cn) with two
chromatic classes, S1 and S2, consisting of a single edge. Furthermore, suppose that n is the minimum
such integer. The minimality of n and Proposition 1 imply that S1 and S2 are the only stars of c.

Let T1, . . . , Tk be the chromatic classes of c different from S1 and S2. Note that these are thrackles.
Fabila-Monroy and Wood (2011) showed that T1 ∪ · · · ∪ Tk consists of at most kn −

(
k
2

)
edges of Cn.

Therefore,
(
n
2

)
≤ kn−

(
k
2

)
+2. This implies that (n−k)2 ≤ n+k+4. Since k = f(n)−2 = n−g(n)−1,

we have that (g(n)+1)2 ≤ 2n− (g(n)+1)+4. Rearranging terms in the previous inequality we arrive at(
g(n)+1

2

)
≤ n− g(n) + 1. By the definition of g(n),

(
g(n)+1

2

)
> n. Therefore, g(n) < 1 –a contradiction.

2

3 The Chromatic Number of D(Ck,l)
It is relatively easy to find an optimal coloring of D(Ck,l).

Lemma 1 For all positive integers k ≤ l,

χ(D(Ck,l)) ≤ k + f(l).

Proof: Color the edges of L of Ck,l with f(l) colors. For each of the k vertices in U , color the edges
incident to them, that have not been colored yet, with a new color. This yields a proper coloring ofD(Ck,l)
with k + f(l) colors. 2

The following lemma is needed to prove the lower bound on χ(D(Ck,l)).

Lemma 2 If l ≥ 3, then χ(D(C1,l)) ≥ 1 + f(l).

Proof:
From Eq. (1) we know that f(3) = 1. Now we shall show that χ(D(C1,3)) = 1 + f(3) = 2. The

proper coloring of D(C1,3) given in Figure 3 shows that χ(D(C1,3)) ≤ 2. On the other hand, since the
straight line segments yx2 and x1x3 are disjoint, then they cannot receive the same color in any proper
coloring of D(C1,3). This implies that χ(D(C1,3)) ≥ 2, as required.
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Fig. 3: A proper coloring of D(C1,3).

Assume that l ≥ 4 and that the result holds for smaller values of l. Let c be an optimal coloring of
D(C1,l). We may assume that c, when restricted to L uses f(l) colors, as otherwise we are done.

Suppose that c has a star with apex v. Then by Proposition 1, the graph D(C1,l \ {v}) can be properly
colored with one color less. If v is the single point in U , then c uses at least f(l) + 1 colors. If v is in L,
then by induction, c uses at least χ(D(C1,l−1)) + 1 = f(l − 1) + 2 colors. By Proposition 2 this is at
least f(l) + 1. Then we can assume that all chromatic classes of c are thrackles.

We claim that if all the edges incident to the single vertex u in U are in the same chromatic classH , then
H is a star with apex u. Indeed, let h1, h2, . . . , hl be the edges incident with u, and letw1, w2, . . . , wl ∈ L
be their respective endpoints. Then {h1, h2, . . . , hl} ⊆ H and L = {w1, w2, . . . , wl}. Now, suppose by
way of contradiction that there is an edge wiwj belonging to H . Since l ≥ 3, then there exists a point
wk ∈ L \ {wi, wj}. The existence of such wk and the fact that L is an l-cap imply that hk is disjoint from
wiwj . But this contradicts that hk and wiwj are in the chromatic class H . Thus we may assume that there
are two edges incident to u with different color.

Let e1 and e2 be two edges incident to u of different colors. Suppose that e1 is colored red and e2 is
colored blue. Let v1 and v2 be their respective endpoints in L. Since the red and blue edges are not stars,
there exist edges f1 and f2, both with endpoints in L, of colors red and blue, respectively. Note also that
all the red edges of L must be incident to v1 and that all the blue edges of L must be incident to v2. Since
the red and the blue edges are not stars, then there exist other edges incident to u of colors red and blue.
Let g1 and g2 be such edges, and suppose that g1 is red and that g2 is blue.

We claim that f1 and f2 are the only red and blue edges in L. Seeking a contradiction, suppose that
there exists a red edge f ′1 6= f1 with endpoints in L. From previous paragraph we know that both f1 and
f ′1 are incident with v1. Let v and v′ be the other endpoints of f1 and f ′1, respectively. Then v 6= v′, and
as a consequence, there is a w ∈ {v, v′} such that w is not in g1. This implies that the element of {f1, f ′1}
that is incident with w is disjoint from g1. This last statement contradicts the assumption that f1, f ′1,
and g1 are all red. A totally analogous argument shows that f2 is the only blue edge in L. Therefore, c
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when restricted to L is an optimal coloring of Cl in which two chromatic classes consist of a single edge.
The last conclusion contradicts Proposition 3, yielding that the restriction of c to L is not optimal. This
contradicts our earlier supposition that c, when restricted to L uses f(l) colors.

2

Lemma 3 If l ≥ 3, then χ(D(Ck,l)) ≥ k + f(l).

Proof: Suppose for a contradiction that there exist k and l such that there exists an optimal coloring c of
D(Ck,l) with less than k+ f(l) colors. Furthermore suppose that k and l are such that k+ l is minimum.
It can be checked by hand that the theorem holds for k ≤ l ≤ 3, and by Lemma 2 it holds for k = 1.
Therefore, k ≥ 2 and l ≥ 4.

Suppose that c has a star with apex v. By Proposition 1, D(Ck,l \ {v}) can be colored with less than
k + f(l) − 1 colors. If v is in U then we have Ck,l \ {v} = Ck−1,l and D(Ck−1,l) can be colored with
less than (k − 1) + f(l) colors; this contradicts the minimality of k + l. If k = l, we can assume without
loss of generality that v is in U . Thus, we assume that v is in L and that k < l. Then Ck,l \ {v} = Ck,l−1
and, by Proposition 1, D(Ck,l−1) can be colored with less than k+ f(l)− 1 colors. By Proposition 2, we
know that k+ f(l)− 1 ≤ k+ f(l− 1); this contradicts the minimality of k+ l. Thus we can assume that
all the chromatic classes of c are thrackles.

Note that there are exactly four edges e1, e2, e3 and e4 in the convex hull of Ck,l, and let v1, v2, v3
and v4 be the set of endpoints of e1, e2, e3 and e4. Since each ei does not cross any other edge, then
every edge of the same color as ei must be incident to one of the endpoints of ei. Let γ be the number of
different colors received by these four edges in c. Note that γ = 2, 3 or 4.

Suppose that γ = 2. Without loss of generality assume that e1 and e2 are blue; e3 and e4 are red; v3 is
the common endpoint of e1 and e2; and that v4 is the common endpoint of e3 and e4. See Figure 4 (left).
We claim that at least one of these two chromatic classes is a star. Suppose that the blue chromatic class
is not a star. Then there is a blue edge g which is not incident to v3. As neither e1 nor e2 is crossed by any
other edge, then such a g must be v1v2. Since g is blue and it is the the only edge that intersects both e3
and e4 but not at v4, then the red chromatic class is a star with apex v4, a contradiction to the assumption
that all the chromatic classes of c are thrackles.

Suppose that γ = 4. Then there are no edges with the same color as any of the ei inCk,l\{v1, v2, v3, v4}.
Therefore, c when restricted to the subgraph D(Ck,l \ {v1, v2, v3, v4}) uses less than k+ f(l)− 4 colors.
See Figure 4 (right). Note that Ck,l \ {v1, v2, v3, v4} = Ck−2,l−2; by Proposition 2, k + f(l) − 4 is at
most (k − 2) + f(l − 2); this contradicts the minimality of k + l.

Finally, suppose that γ = 3. Then exactly two of the ei are of the same color; moreover these edges
share an endpoint. Without loss of generality assume that: these edges are e1 and e2; their common
endpoint is v3; and that the other endpoints of e1 and e2 are v1 and v2, respectively. Assume that e1 and
e2 are colored blue. Since all the chromatic classes in c are thrackles then the edge v1v2 must also be
colored blue. Let S := U if v3 is in U and let S := L if v3 is in L. Without loss of generality assume
that v1 is not in S. Note that any other blue edge must be incident to v3 and its other endpoint is not in S.
Now we recolor blue all the edges incident with v3 and having the other endpoint not in S. See Figure 5.

First let us assume that |S| ≥ 3. We only show the case in which S = U . The proof for the case S = L
is totally analogous. Then S \ {v2, v3} is not empty. Let w be the vertex in S \ {v2, v3} which is the
closest to v3. See Figure 5 (left). From the definition of w we have that the edge v3w does not cross any
other edge, and in particular v3w cannot be blue. Suppose that v3w is red. If v1w is also colored red,
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Fig. 4: The cases γ = 2 (left) and γ = 4 (right) in the proof of Lemma 3.

then the red chromatic class is a star, a contradiction. Thus v1w is not red. Since v1w cannot be colored
blue, we assume that it is colored gray. See Figure 5 (left). Since v1w is crossed only by blue edges,
then any other gray edge must be incident to v1 or w. Also note that every red edge must be incident
to v3 or w. These observations together imply that c when restricted to Ck,l \ {v1, w, v3} is a coloring
of D(Ck,l \ {v1, w, v3}) with less than k + f(l) − 3 colors. Then Ck,l \ {v1, w, v3} = Ck−2,l−1. By
Proposition 2, k + f(l)− 3 ≤ (k − 2) + f(l − 1); this contradicts the minimality of k + l.

Now suppose that |S| = 2. Then S = U = {v2, v3}. By symmetry, we may assume that e1, e2, e3 and
e4 are placed as in Figure 5 (right), and that e3 = v2v4 is green. Let w be the vertex in L \ {v1, v4} which
is closest to v4. Then wv4 does not cross any other edge, and any edge crossing wv2 is blue. Also note
that wv2 cannot be blue. If wv2 and wv4 receive the same color, different from green, then the chromatic
class containing them must be a star. Similarly, if wv2, wv4 and v2v4 receive distinct colors, then we can
proceed as in previous paragraph and deduce that C1,l−2 = C2,l \ {v2, w, v4} is a counterexample that
contradicts the minimality of k + l.

Thus we may assume that at least one of wv2 or wv4 is green. We claim that both are green. Because
v2v4 is not crossed by any edge, then any other green edge must be adjacent to exactly one of v2 or v4.
This and the fact that the green chromatic class is not a star, imply that for each v ∈ {v2, v4} there exists
at least one green edge distinct of v2v4 which is incident with v. Let v2x and v4y be any couple of such
green edges. Clearly, x, y ∈ L \ {v4}. Since the green edges incident with v2 are crossed only by blue
edges, then we must have that x = y. This and the fact that at least one of wv2 or wv4 is green imply that
w = x = y. This implies that the green chromatic class consists precisely of wv2, wv4 and v2v4.

Let w′ be the vertex in L \ {v1, w, v4} which is the closest to w. See Figure 5 (right). Note that ww′

does not cross any other edge, and that any edge crossing w′v2 is blue. Also note that none of w′v2 and
w′v4 can be blue or green. Again, if w′v2 and w′v4 receive the same color, then the chromatic class
containing them must be a star. Thus we assume that w′v2 and w′v4 have distinct colors. This implies
that the color of at least one of w′v2 or w′v4 is different from the color of ww′. Let v ∈ {v2, v4} such
that c(ww′) 6= c(w′v). Since none of ww′ and w′v can be green, then the colors of ww′, wv, and w′v
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Fig. 5: Here we illustrate the only two (up to symmetry) possibilities for the case γ = 3. On the left we have the case
in which |S| ≥ 3 and S = U . On the right we have the case in which |S| = 2 and hence S = U .

are distinct. From this and the fact that any edge crossing w′v is blue or incident with w it follows that
C2,l \ {v, w,w′} is a counterexample that contradicts the minimality of k + l. The result follows. 2

Summarizing, we have the following result.

Theorem 1 For l ≥ 3, χ(D(Ck,l)) = k + f(l).
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