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Resumen

En esta tesis, se proponen tres heurísticas para la selección de padres en Programación

Genética (PG) basadas en propiedades de funciones e información semántica de los

individuos. La semántica se ha utilizado recientemente para guiar el proceso de apren-

dizaje cuando PG es utilizada para resolver problemas de aprendizaje supervisado.

Sin embargo, de lo mejor de nuestro conocimiento, esta es la primera vez que las

propiedades de las funciones son utilizadas para guiar el proceso de aprendizaje de

PG. Las heuristicas están diseñadas para la función suma
∑

, y los clasificadores Naive

Bayes y Nearest Centroid. La primer heurística basada en la similitud coseno promueve

la selección de padres cuyas semánticas son lo más perpendicular posible entre ellas

en el espacio semántico. La segunda, basada en el coeficiente de correlación de Pear-

son, busca padres cuyos vectores semánticos no están correlacionados. Finalmente,

la última heurística, basada en accuracy, trata de seleccionar padres cuya semánticas

son diferentes entre ellas. Además, analizamos el uso de elección complementamente

aleatoria para selección de padres y selección negativa. Estas técnicas de selección

fueron implementadas en EvoDAG, un sistema de Programación Genética Semántica.

Para comparar los diferentes esquemas de selección, usamos 30 problemas de clasi-

ficación con un variado número de muestras, variables y clases. Los resultados indi-

can que la combinación de nuestra heurística basada en accuracy para la selección de

padres y selección negativa aleatoria genera la mejor combinación, y la diferencia en

eficiencia entre esta combinación y la selección clásica basada en aptitud es estadísti-

camente significativa. Además también comparamos nuestras heurísticas con los es-

quemas del estado del arte, Angle-Driven Selection, y Novelty Search. EvoDAG junto

con las heurísticas propuestas fue comparado con 18 clasificadores que incluyen enfo-

ques tradicionales, así como técnicas de auto aprendizaje computacional. Concluimos

que el uso de nuestras heurísticas mejora significativamente el proceso de aprendizaje

de EvoDAG.



Abstract

In this dissertation, three heuristics for parent selection in Genetic Programming (GP)

based on functions’ properties and individuals’ semantics have been proposed. Se-

mantics have recently used for guiding the learning process when GP is used to solve

supervised learning problems. However, to the best of our knowledge, this is the first

time that functions’ properties are used for guiding the learning process in GP. The

heuristics are tailored to the function
∑

, and the classifiers Naive Bayes and Nearest

Centroid. The first heuristic based on cosine similarity promotes the selection of par-

ents whose semantics are as perpendicular as possible between them in the semantics

space. The second one, based on Pearson’s correlation coefficient, searches parents

whose semantics’ vectors are uncorrelated. Finally, the last one, based on accuracy,

tries to select parents whose semantics are different between them. In addition, we

analyze the use of completely random selection for parents and negative selection.

These selection techniques were implemented on EvoDAG, a Semantic Genetic Pro-

gramming system. For comparing the different selection schemes, we use 30 classifi-

cation problems with a variable number of samples, variables, and classes. The results

indicate that the combination of our heuristic based on accuracy for parent selection

and negative random selection produces the best combination, and the difference in

performances between this combination and the classical selection based on fitness is

statistically significant. Furthermore, we compare our heuristics with state-of-the-art

schemes, Angle-Driven Selection, and Novelty Search. Besides, EvoDAG with the pro-

posed selection heuristics was compared against 18 classifiers that included traditional

approaches as well as auto-machine-learning techniques. We conclude that the use of

our proposed heuristics significantly improves the learning process of EvoDAG.
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Glossary

Evolutionary Computation is a research area within computer science, as the name

suggests, it is a particular flavor of computing, which draws inspiration from the

process of natural evolution. It is a family of algorithms for solving combinatorial

and optimization problems.

Genetic Programming is an evolutionary algorithm that evolves a population of com-

puter programs for solving a specific problem.

selection is one of the main characteristics of evolutionary algorithms. It consists of

choose individuals from the population for being parents from the next genera-

tion.

Semantic Genetic Programming is an approach of Genetic Programming that uses

semantics for guiding the learning process.

semantics is a representation of Genetic Programming individuals where they are seen

as vectors in a multidimensional space, known as semantic space. The vector’

entries correspond to the evaluation of the training samples in the function that

the individual represents.

tournament is a selection technique. It consists of comparing several individuals from

the population, randomly chosen, and select the best one.



Introduction

Nowadays, with advances in technology, we can store and process large amounts of

data, as well as access it from physically distant locations over a computer network [1].

Bank transactions, satellite images, video cameras for surveillance, and industrial sen-

sors are examples of large amounts of data. Nevertheless, this stored data becomes

useful only when it is analyzed and turned into information [1].

Applications in which the data comprises several samples with their correspond-

ing targets are known as supervised learning problems. The main idea is that a model

can learn of labeled samples to make predictions for new data. Specifically, the su-

pervised learning problems, where the samples are grouped in different categories, are

called classification problems. Some examples of classification are the followings [25]:

• Predict whether a patient, hospitalized due to a heart attack, will have a second

heart attack. The prediction could be based on demographics, diet, and clinical

measurements for that patient.

• Identify the numbers in a handwritten zip code, from a digitized image.

• Identify the emotion in a short text.

Formally, classification consists of finding a function that learns a relation be-

tween input variables x1, ..., xm and one output t . In this case, the value t is taken

from a set of labels. The starting point would be a set of samples, this is, input-output

pairs. In each sample, the input vector ~x(i ) ∈ Rm is related to its output t (i ), in this

case, ~x(i ) =
[

x(i )
1 , ..., x(i )

m

]
. For example, the input of a sample could be the results of a

blood test, and the output the label that indicates whether the patient has a specific

illness or not. Formally, the set of samples, input-output pairs, is called training set,

i.e, X = {( ~x(1), t (1)), . . . , ( ~x(n), t (n))}. Returning to the the example, using many samples

of blood tests with the label that indicates if the patients had the illness or not, we

can train an algorithm to predict whether new patients have or not the illness based on

1



their blood tests. Formally, the training set is used to find a function f that minimize an

error function, E , that is, f is the function that minimize
∑

(~x,t )∈X E ( f ( ~x(i )), t (i )) where

the ideal scenario would be ∀(~x,t ) ∈X f (~x) = t . Once the function f is learned, it can be

use for predicting new inputs.

There are well-known techniques that can satisfactorily solve classification prob-

lems, for example, Artificial Neural Networks (ANN), Support Vector Machines (SVM),

and Decision Trees (DT). However, those techniques follow a hard defined structure.

ANN needs to have several artificial neurons organized in layers, and the learning pro-

cess consists of finding the neurons’ weights. SVM is a linear classifier that separates

the data of different classes using a hyper-plane. Also, it can use kernels to perform

a non-linear classifier. The kernels and the model are defined, and the learning pro-

cess consists of calculating the parameters of functions. DT divide the data space into

hyper-rectangles with the idea of grouping together samples with the same label, and

then, in the prediction phase, they assign to the new sample the label that corresponds

to the majority of samples in the hyper-rectangle. Its model is composed of a series of

binary questions that give a final prediction. All these examples of techniques can find

successful models that fit the data. However, they always follow the same structure for

all problems. On the other hand, Genetic Programming (GP) is an evolutionary algo-

rithm that can find a function that is adapted to the classification problem. Its proposal

does not follow a hard structure. GP finds a function in a search space composed of all

the possible combinations of elementary functions (e.g., +,-,*,/) and terminals (e.g., in-

put variables, constants). In this sense, GP can return as a classifier, the same model of

an SVM, or an ANN, but it also can find a more straightforward model or a more com-

plex one.

Genetic programming (GP) [48], proposed by John Koza around the 1990s, is

one of the youngest members of the evolutionary algorithm family. It has been used

to solve a variety of problems. For example, autonomous controllers for unmanned

aerial vehicles [2, 75], prediction of energy performance [11, 61], antennas designing

2



[19, 63], sentimental analysis [31, 34], predicting financial data [45, 88], circuits design-

ing [49, 71, 86]. However, the flexibility of GP for solving supervised learning problems

makes it very difficult to converge. It means that the process of searching in a vast space

of functions and terminals is very complicated. Most of research documents presents

GP for solving symbolic regression problems (see Section 2.5). To the best of our knowl-

edge, the classifiers constructed with GP started appearing around the 2000s (see Sec-

tion 2.5). Despite its shortage, robust models have been developed, as M4GP [60] or

TPOT [76], those techniques are explained in detail in Chapter 2. We consider that GP,

specifically for solving supervised learning problems, can be improved and deserves

the attention of researchers because it presents a new way of constructing models, GP

evolves models instead of only adjusting parameters.

Motivation

GP individuals are commonly represented as syntax trees, and when the objective is

solving supervised learning problems, those syntax trees represent functions that model

the relationship between inputs and outputs. Moreover, in supervised learning prob-

lems, Semantic Genetic Programming (SGP) has received much attention because it has

allowed improving the performance of GP in recent years. According to Vanneschi [97],

in SGP, the individuals can be represented in two spaces. On the first hand, we have the

genotype space, where individuals are represented by their tree structures. On the other

hand, in the semantics space, each individual is represented by a vector that contains

the outputs of the individual’s function when all the training samples are evaluated

(see Figure 1.6). The target vector, which contains the real outputs, also is a point in the

semantic space. From this point of view, the learning process consists of finding the

individual whose semantics is as close as possible to the target vector. The use of indi-

viduals’ semantics is very useful for designing operators and GP systems. Krawiec [52]

affirmed that aware semantic methods make search algorithms better informed.

Based on our review of the state-of-the-art (see Chapter 2), most of the work
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in SGP is focused on the development of crossover and mutation operators. However,

only a few documents have focused on selection, that in GP is traditionally performed

using tournament selection, where a set of individuals are randomly chosen from the

population, and the most adapted one is selected for being a parent. Some of the doc-

uments that are focus on selection are the followings. They explained in detail in Sec-

tion 2.3. In Novelty Search [62], 2011, the fitness function is replaced by the novelty

of individuals that is computed as the average of the distances between itself and its

nearest neighbors. The fitted individuals are the ones that are distant to the rest of

individuals. The result is that the population diversity is promoted. In 2016, Hara et

al. proposed Deterministic Geometric Semantic Genetic Programming with Optimal

Mate Selection [38], where a selection technique was designed with the objective of

improving the performance of their crossover operator. In 2018, Chu et al. [17,18] used

the Wilcoxon signed-rank test to compare individuals’ semantics and decide whether

to select the individual with the best fitness or the smallest one. Angle-Driven Selection

(ADS) [15], 2019, aims to choose parents whose angles between their relative semantics

are big with the goal of selecting different parents. Nested alignment genetic program-

ming (NAGP) [98], 2019, introduces a selection scheme based on five selection criteria,

which had been organized into a nested tournament. Their main objective is to find

individuals whose angle between their error vectors is equal to zero.

Nevertheless, since a model can be evolved with GP using a set of functions and

terminals, we consider that selection can be guided, besides individuals’ semantics, by

functions’ properties. For example, in a multidimensional space, the function
∑

can be

seen as a linear combination, and linearly independent vectors are appropriate when

that function is going to be used. To the best of our knowledge, no one has tried to use

functions’ properties for designing selection techniques, and we consider that it can

improve the performance of SGP.

On the other hand, only some GP classifiers have been proposed, and they

started to appearing around 2000s (see Section 2.5). Ingalalli et al. affirmed in 2014
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that GP was never regarded as a good method to perform multi-class classification

[46]. However, some robust GP classifiers have been introduced recently. The auto-

machine learning technique called Tree-based Pipeline Optimization Tool (TPOT) [76],

proposed in 2016, uses GP for developing a robust algorithm that automatically con-

structs and optimizes machine learning pipelines with the aim of solving regression

and classification problems. In 2019, M4GP [60] was proposed. It is an extended ver-

sion of M2GP [46] and M3GP [70]. The main idea is to transform the original space

into another one using functions evolved with GP, then, they calculate a centroid for

each class, and the vectors are assigned to the class that corresponds to the nearest

centroid using the Mahalanobis distance. TPOT and M4GP are explained in Section

2.4. Nevertheless, we consider that it is essential to improve the process of evolving

full GP models for solving supervised learning problems, as it is done in EvoDAG [36],

proposed by Graff et al., and explained in Section 1.4.

Summarizing, this dissertation has been motivated by the following:

• Genetic Programming, proposed in the 1990s, is one of the youngest members

of the evolutionary algorithm family. We believed that much of its potential for

solving supervised learning problems had not been discovered yet.

• According to Vanneschi [99], in 2014, methods that work directly in the semantic

space are recent, and much of its potentiality is to be seen.

• Most of SGP research focuses on developing crossover and mutation operators,

but only a few of them proposes new selection schemes.

• To the best of our knowledge, no one has tried to use functions’ properties for

designing selection techniques, and we consider that it can improve the learning

phase of SGP.

• Classification has a lot of practical applications, and GP tools for solving super-

vised learning problems have recently been proposed, as EvoDAG [36], M4GP

[60], and TPOT [76]. We consider that we can research new selection schemes for

improving those kinds of GP classifiers.
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Objectives

The main objective of this thesis is to develop new parent selection schemes based

on functions’ properties and individuals’ semantics. In addition to performing a com-

parison of classical and state-of-the-art selection techniques. The idea is to answer

questions such a: Is it worth selecting parents based on fitness? What will happen if

the individuals are randomly selected? Which functions and which properties can be

helpful for designing selection techniques?

GP algorithms traditionally use the steady-state population model. It starts with

a population of individuals, and in each iteration, one individual is created and it re-

places another one from the population. There are two stages where selection takes

place, on the one hand, the selection is used to choose the parents of the new individ-

ual, and on the other hand, the selection is applied to decide which individual, in the

current population, is replaced with the offspring. We called the first stage parent se-

lection and the second one negative selection. Chapter 1 explains this process in detail.

The goal is comparing different techniques for both stages: parent and negative selec-

tion.

Besides, we want to concentrate into classification problems. The idea is de-

signing selection techniques for improving SGP in those specific problems.

In summary the objectives of this thesis are:

• Developing new parent selection schemes based on functions’ properties and

individuals’ semantics.

• Performing a comparison of classical and state-of-the-art selection techniques

for parent and negative selection.

• Using the new selection techniques to improve the performance of SGP for solv-

ing classification problems.
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Contribution

Based on the results (see Chapter 4), this dissertation has probed that fitness is not al-

ways the best option for selecting individuals. In this thesis, we proposed three heuris-

tics for parent selection in GP that were designed based on the properties of the func-

tion sum (
∑

), and the classifiers Naive Bayes (NB and MN) and Nearest Centroid (NC)

(see Chapter 3). To the best of our knowledge, this is the first time that selection schemes

based on functions’ properties have been proposed. The heuristics are designed for

solving classification problems. They are the followings:

• Tournament selection based on cosine similarity (sim). It consists of selecting in-

dividuals whose semantics’ vectors ideally have rectangle angles. The absolute

cosine similarity is used to measure the angle between individuals’ semantics. It

is explained in Section 3.2.3.

• Tournament selection based on Pearson’s correlation coefficient (prs). The main

idea is promoting the selection of parents whose semantics’ vectors are uncor-

related. We use the absolute Pearson’s correlation coefficient for measuring the

correlation among inputs. It is explained in Section 3.2.3.

• Tournament selection based on accuracy (acc). The main idea is promoting the

selection of parents whose predictions are different, and this is measured with

the accuracy score. It is explained in Section 3.2.4.

Besides, we analyze two techniques for negative selection, one of them based

on fitness and the other totally random selection (see Section 3.3).

We implemented classical and state-of-the-art selection techniques, in addition

to the proposed heuristics, in the GP system EvoDAG (see 1.4). Based on the results

(see Chapter 4), the combination of tournament selection based on accuracy for par-

ent selection plus negative random selection statistically outperformed the classical

selection tournaments based on fitness. Besides, that combination also improved the

performance of EvoDAG and positioned it as one of the best classifiers. It is based on
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the comparison of EvoDAG against sixteen scikit-learn classifiers [80] and two auto-

machine-learning tools.
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Thesis Outline

Chapter 1 describes Genetic Programming. It starts with a brief introduction to Evolu-

tionary Computation describing the evolutive process and the key concepts as repre-

sentation, fitness function, selection, and the variation operators: crossover and mu-

tation. It is followed by a description of Genetic Programming, including its classical

representation, applications, initialization, and operators. Moreover, we describe how

Semantic Genetic Programming can be used for solving supervised learning problems.

Finally, we describe EvoDAG, the GP system where the proposed selection heuristics

are implemented.

Chapter 2 presents the related work. First, we describe how semantics have

been used for improving the performance of GP, including the direct and indirect use

of it. Inside of the direct use of semantics, we present Geometric Semantic Genetic

Programming (GSGP) and some of the operators that have been inspired by it. Then,

we review some of the work that changes the fitness function and performs the search

using another objective. Also, we mention the research that has been focused on selec-

tion, specifically in GP. Finally, a review of GP classifiers is shown.

Chapter 3 introduces the proposed selection heuristics and the inspiration that

we used. First, we describe the motivations of these selection schemes. Then, the chap-

ter is divided into parent and negative selection techniques. For parent selection, we

propose three selection heuristics: tournament selection based on cosine similarity

(sim), tournament selection based on Pearson’s correlation coefficient (prs), and tour-

nament selection based on the accuracy (acc). We also describe, for parent and nega-

tive selection, tournament selection based on fitness (fit) and random selection (rnd).

Chapter 4 describes the experiments and results. The chapter starts with the

experiment description, this is, the datasets, the computer equipment characteris-

tics, and the performance metrics that were used. Then, the performance of EvoDAG
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with different selection schemes is presented. First, an analysis of the classic selec-

tion technique based on fitness against random selection, and the proposed selec-

tion heuristics, is presented. Then, we include in the comparison the state-of-the-art

selection schemes, Angle-Driven Selection [15], and Novelty Search [72]. Finally, we

compare EvoDAG with the proposed heuristics against eighteen classifiers, sixteen of

them from the python library scikit-learn [80]: Perceptron, MLPClassifier, BernoulliNB,

GaussianNB, KNeighborsClassifier, NearestCentroid, LogisticRegression, LinearSVC, SVC,

SGDClassifier, PassiveAggressiveClassifier, DecisionTreeClassifier, ExtraTreesClassifier,

RandomForestClassifier, AdaBoostClassifier and GradientBoostingClassifier; and the

others are two auto-machine learning libraries: autosklearn [23] and TPOT [76]. In all

cases, the Wilcoxon test was used for validating our results.

10



Chapter 1

Genetic Programming



1 Genetic Programming

This chapter presents a brief introduction to Evolutionary Computation (EC) and their

primary operations. Moreover, this chapter introduces Genetic Programming (GP),

one of the youngest members of the evolutionary algorithm family, its applications,

representation, and operators. Besides, we present the concept of semantics and how

Semantic Genetic Programming has been used for solving supervised learning prob-

lems.

Finally, we present EvoDAG, a GP system, where our selection heuristics are im-

plemented and tested.

1.1 A Brief Introduction to Evolutionary Computing

Evolutionary computing (EC) [21] is a research area within computer science, as the

name suggests, it is a particular flavor of computing, which draws inspiration from the

process of natural evolution. Darwin’s theory of evolution is described in the book “In-

troduction to Evolutionary Computation” [21] as follows. Darwin’s theory of evolution

explains biological diversity and its underlying mechanisms. Given an environment

that can host only a limited number of individuals, and the basic instinct of individ-

uals to reproduce, selection becomes inevitable if the population size is not to grow

exponentially. Natural selection favors those individuals that compete for the given

resources most effectively; in other words, those that are adapted or fit to the envi-

ronmental conditions best. This phenomenon is also known as the survival of the

fittest. Competition based selection is one of the two cornerstones of evolutionary

progress. The other primary force identified by Darwin results from phenotypic vari-

ations among members of the population. Phenotypic traits are those behavioral and

physical features of an individual that directly affect its response to the environment,

thus determining its fitness. Each individual represents a unique combination of phe-

notypic traits that is evaluated by the environment. If it evaluates favorably, then it is
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propagated via the individual’s offspring; otherwise, it is discarded by dying without

offspring. Darwin’s insight was that small, mutations in phenotypic traits occur during

reproduction from generation to generation. Through these variations, new combina-

tions of traits occur and get evaluated. The best ones survive and reproduce, and so

evolution progresses. To summarise this basic model, a population consists of several

individuals. These individuals are the “units of selection”, that is to say that their repro-

ductive success depends on how well they are adapted to their environment relative to

the rest of the population. As the more successful individuals reproduce, occasional

mutations give rise to new individuals to be tested. Thus, as time passes, there is a

change in the constitution of the population, i.e., the population is the “unit of evolu-

tion”.

The evolution theory has been used as an inspiration for several Evolutionary

Algorithms (EAs) to solve hard problems. The connection between Darwin’s theory and

the algorithms is the following. First, the problem to be solved represents the environ-

ment, where the individuals, which are represented by the solutions, evolve. In this

sense, the best solutions to the problem represent individuals that are well adapted to

the environment. The key concepts in EC are:

• Representation. It is the structure of a solution in such a way that it can be used

for the algorithm. It is divided into genotype and phenotype. Genotype comes

from the word “gen”; it is the code representation that is used for the crossover

and mutation operators. Phenotype is the solution that the genotype represents.

Generally, it is used to calculate the individual’s fitness.

• Fitness function. It is the way of calculating the individual’s aptitude. It must

receive the phenotype and return a numeric value that indicates how well the

individual solves the problem.

• selection. Its objective is to warranty the quality of individuals. The main idea is

to conserve the proper individuals and remove the bad ones.

• Variation operators: crossover and mutation. Crossover generates new individ-
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uals, or offsprings, mixing the characteristics of parents. Mutation variates an

individual to explore the search space.

The general evolution process of the EAs is described in the Figure 1.1.

Figure 1.1: Diagram of evolutionary algorithms’ evolution process. Source: Own elab-
oration.

The evolutive algorithms started appearing around the 1960s. Holland intro-

duced genetic algorithms [42,43]. Maybe it is the most known and used algorithm from

the EAs. The main characteristic of genetic algorithms is their inspiration on chromo-

somes, where a solution is represented by a bit string. Fogel proposed evolutionary pro-

gramming [24], originally they evolved finite state machines. Rechenberg and Schwefel

invented evolution strategies [84, 89] to solve numerical optimization problems. Those

techniques starting a research area that around the 1990s was called evolutionary com-

puting. In the 1990s arose two new approaches. Storn and Price proposed differen-

tial evolution [91], a powerful algorithm for solving continuous optimization problems.

Genetic programming was introduced by Koza [48], its main characteristic is its repre-

sentation, where programs can be evolved. Commonly, individuals are represented as

syntax trees. There are other EAs, but we mention only the most known and used ones.
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1.2 General Concepts of Genetic Programming

Genetic programming (GP) [48], proposed by John Koza around the 1990s, is one of the

youngest members of the evolutionary algorithm family. It automatically solves prob-

lems without requiring the user to know or specify the form or structure of the solution

in advance [82]. The main idea of GP is to evolve a population of computer programs,

where individuals are commonly represented as syntax trees, as it is shown in Figure

1.2. While the EAs are typically applied to optimization problems, GP could instead

be positioned in machine learning [21]. For example, GP can solve the problems men-

tioned at the beginning of the Introduction.

Figure 1.2: Example of a GP individual representation structure. Source: Own elabora-
tion.

GP can be used to solve a wide variety of problems. For example, synthesis and

design of circuits [49, 50, 71, 86], automatic synthesis of antennas [19, 63], design of au-

tonomous controllers [2, 75], modeling the financial time series [45, 88], forecasting in

the energy area [11, 61], and, sentiment analysis [31, 34].

Specifically, in Machine Learning, GP has been used in several phases of the

process. As a pre-processing technique [46, 60, 70]. For improving the performance or

structure of different algorithms, like decision trees [41, 59], support vector machines

[94], or convolutional neural networks [93]. As a full model selection algorithm as done

in TPOT (Tree-based Pipeline Optimization Tool) [76]. Alternatively, for evolving full

models as EvoDAG [36], which is described in detail in Section 1.4.
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Representation

In Genetic Programming, individuals are usually represented as syntax trees [82] (see

Figure 1.3).

Figure 1.3: Genetic Programming syntax tree that represents the function
mi n(cos(x), x y, z). Source: Own elaboration.

The elements of a GP individual are:

• Terminals, which correspond to the leave nodes in a syntax tree. They can be in-

puts, typically called variables (e.g., x and y), functions without arguments (e.g.,

rand()), or constants that can be predefined or randomly generated. The termi-

nal set T defines all the terminal elements.

• Functions, which correspond to the internal nodes in a syntax tree and can be

seen as the operations. The function set F is defined by the problem’s nature.

For example, for numeric problems, it could be formed by arithmetic operators

and trigonometric functions.

Solution of a Problem

The first step for solving a problem with Genetic Programming is to define a fitness

function. It needs to return a numeric value that indicates how well the individual

solves the problem. For example, if we are using GP for recognizing faces, the fitness

can be calculated as the number of images that the classifier predicts correctly. Specif-

ically, for classification problems, defined at the beginning of the Introduction, the ob-

jective is to find an individual whose function matches inputs with outputs reducing

an error function. Then, the fitness function could return the inverse of the error func-

tion, in this sense, an individual with a small error could have good fitness, and, in the
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opposite, an individual with a big error will have poor fitness.

Once the fitness function is defined, several GP individuals are evolved using

the following process (see Algorithm 1). First, an initial population of programs, as the

one showed in Figure 1.2, is created. There are three classical techniques to generate

the initial population [82]. The first one is called full, where all the trees are randomly

created, and all the leaves have the same depth. It means, in all levels, except the last

one, the nodes are internal nodes selecting elements randomly from the function set

F and only in the last level the elements are selected randomly from the terminal set

T . The second technique is called grow; in this case, each node selects an element

randomly from either the function set F or the terminal set T . Finally, the technique

Ramped half-and-half where half of the population is created with the full technique

and the other half with grow. After creating the initial population, the fitness of all indi-

viduals is calculated. Also, the best program, based on fitness, and its fitness are stored.

The population is iteratively changed until a termination criterion is reached.

The termination criterion may be a maximum number of iterations to be run as well

as a problem-specific success predicate [82]. Using the example of faces recognition,

the termination criterion could be to have as maximum 10,000 iterations, or, finding a

program that can recognize the 90% of the images, whichever comes first.

Two different population models exist in EC [21]: the generational model and

the steady-state model. In the first one, in each generation, we begin with a population

of individuals, and several parents are selected from that population to generate the

offspring by the application of variation operators. After each generation, the whole

population is replaced by its offspring, which is called the next generation. On the other

side, in the steady-state model, the entire population is not changed at once, but rather

a part of it. Usually, in each iteration, an individual is generated, and it replaces another

individual in the population (see Algorithm 1). Most of the recent GP implementation

uses the steady-state model [21,82]. In this dissertation, we use the steady-state model.
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As it can bee seen in Algorithm 1, in each iteration, a new program is created, it is the

result of applying the variation operators (crossover and mutation) to two programs

that are selected, based on fitness, as parents. The selection, crossover, and mutation

are explained as follows:

• Selection: As most evolutionary algorithms, the genetic operators in GP are ap-

plied to individuals that are stochastically selected based on fitness. This is, more

adapted individuals have more chances to be part of the evolutionary process

than the ones who are less adapted. According to Mezura-Montes [66], in evolu-

tive algorithms, we can distinguish between two selection techniques. The first

one is proportional selection, where individuals are selected based on their con-

tribution to the total amount of fitness of the population. Furthermore, tour-

nament selection is a direct comparison of fitness among individuals. It can be

either binary (two individuals) or with more than two individuals that are ran-

domly selected from the population. The fittest one wins. In GP, tournament se-

lection is the most used technique [22]. In Chapter 3, several selection heuristics

are proposed to improve the performance of GP for solving classification prob-

lems.

• Crossover: The objective of crossover in GP, as well in other evolutive algorithms,

is to combine the characteristics of two or more individuals, called parents, to

generate the offspring. The classic crossover consists of randomly selecting a

crossover point in each parent and create an offspring based on the first par-

ent but replacing the selected node by the subtree of the second parent on the

crossover point [82] (see Figure 1.4).

• Mutation: The goal of mutation is to change an individual. The most commonly

used form of mutation in GP, called subtree mutation, randomly selects a muta-

tion point in a tree and substitutes the subtree rooted there with a randomly gen-

erated subtree [82] (see Fig 1.5). Another common mutation is point mutation,

where a function node is replaced for another one selecting an element from the
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Figure 1.4: Illustration of Genetic Programming crossover. Source: Own elaboration.

function set F with the same arity.

Figure 1.5: Illustration of Genetic Programming mutation. Source: Own elaboration.

Once the new program is created, it is added to the population, and to maintain

the population size, it replaces another one that is chosen using negative selection (see

Algorithm 1). In GP, the most used technique for negative selection is negative tourna-

ment, it consists of randomly selecting several programs from the population, and the

worst of them, based on fitness, is the one that is going to be replaced. In addition, the

new program is compared with the best one, and the fittest is kept as the best program.
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At the end of the process, the best program based on fitness, is the one that is chosen

as the problems’ solution.

Algorithm 1: Evolution process of Genetic Programming. The under-
lined steps correspond to the ones that are analyzed in this dissertation.

Create an initial population P of programs;
Calculate the fitness of all programs in P ;
best ,best f i tness ← The best program of P and its fitness;
while a termination criterion is not reached do

par ent1, par ent2 ← Two programs that are selected from P based on fitness;

new ← The program that is the result of applying the variation
operators (crossover and mutation) to the programs par ent1 and
par ent2;

ol d ← A program that is chosen from P using negative selection;

Remove ol d from P ;
Add new to P ;
new f i tness ← The fitness of new ;
if new f i tness > best f i tness then

best ← new ;
best f i tness ← new f i tness ;

end
end
Return best ;
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1.3 Semantic Genetic Programming for Supervised Learn-

ing Problems

We can define supervised learning as follows [97]: given a set of samples, or input-

vectors, { ~x(1), ~x(2), ..., ~x(n)}, where ∀i=1,2,...,n : ~x(i ) ∈ Rm , this is, ~x(i ) =
[

x(i )
1 , ..., x(i )

m

]
, and

a target vector ~t = {t (1), t (2), ..., t (n)}, where ∀i=1,2,...,n : t (i ) ∈ R, a supervised learning

problem can be defined as the problem of finding a function f that minimizes an error

function, E , that is, f is the function that minimizes
∑n

i=1 E ( f ( ~x(i )), t (i )) where the ideal

scenario would be ∀i=1,2,...,n f ( ~x(i )) = t (i ). In this way, a GP individual P can be seen as a

function that, for each input vector ~x(i ) returns the scalar value P ( ~x(i )), and the objec-

tive of GP is to find the GP individual that minimizes
∑n

i=1 E (P ( ~x(i )), t (i )).

We call semantics of P to the vector whose entries are all the responses to the

input-vectors, this is, ~SP = [P ( ~x(1)),P ( ~x(2)), ...,P ( ~x(n))]. Semantic Genetic Programming

(SGP) is called in that way because it uses semantics in its evolutionary process. We can

imagine the existence of two spaces: the genotype space, where individuals are repre-

sented by their structures, and the phenotype or semantic space, where individuals are

represented by points, which are their semantics. Remark that the target vector~t it-

self is a point in the semantics space. The dimensionality of the semantics space is the

number of input-vectors. Figure 1.6 shows an example of the genotype and phenotype

spaces of an unrealistic case with only three input-vectors and five GP individuals. As

we can see, the aim of Semantic Genetic Programming (SGP) in supervised learning

problems is to find the tree structure of the individual whose semantics ~SP be as close

as possible to the target~t in the semantic space. Most of the GP implementations for

supervised learning use as fitness function the distance between individuals’ seman-

tics and the target vector.

It could seem easy to find the individual whose semantics is as close as possible

to the target. However, the problem is that the search is performed in the genotype

space, and the results are observed in the semantic space. Pawlak et al. affirmed in [78]
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Figure 1.6: Example of genotype and phenotype spaces. Source: Own elaboration.

that focus on the syntax trees is a complex process because a small variation in the in-

dividual syntax can result in a dramatic change in its response (semantic space). On

the other hand, a significant difference in the syntax cannot affect the response. Nev-

ertheless, Semantic Genetic Programming changes this because it gives information

about the individuals’ behavior.

1.4 EvoDAG

In this section we describe EvoDAG [36], a GP system proposed by Graff et al. that is

used for testing our proposed selection heuristics (see Chapters 3 and 4). EvoDAG is

tailored to tackle classification and regression problems, but, we focus in using and de-

scribing how EvoDAG constructs classification models.

Its name means Evolving Directed Acyclic Graph. It is a python library that im-

plements a steady-state Genetic Programming with tournament selection. It was in-

spired by the geometric semantic crossover [67] proposed by Moraglio et al. and the

implementation performed by Castelli, Vanneschi, and Silva [10, 100]. Specifically, it

has been used for solving complex problems of text categorization [32–34, 65, 77].
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The code of EvoDAG has been uploaded in the public repository:

https://github.com/mgraffg/EvoDAG.

Model

As we mentioned in the first chapter, the starting point would be a set of samples, this

is, input-output pairs. In each sample, the input vector ~x(i ) ∈ Rm is related to its out-

put t (i ), in this case, ~x(i ) =
[

x(i )
1 , ..., x(i )

m

]
. The set of samples, input-output pairs, is called

training set, i.e, X = {( ~x(1), t (1)), . . . , ( ~x(n), t (n))}, that is conformed by n samples and m

variables. EvoDAG uses the training set to find a function f such that for all samples, a

performance metric M is maximized. Formally, EvoDAG solves the optimization prob-

lem defined in Equation 1.1. The ideal scenario would be ∀(~x,t ) ∈X f (~x) = t . Once the

function f is learned, it can be use for predicting new inputs. Specifically, for solv-

ing classification problems, EvoDAG uses as performance metric the macro-F1 score,

described in detail in Section 4.3.

arg f max
∑

(~x,t ) ∈X

M ( f (~x), t ) (1.1)

As we mentioned in Section 1.2, a GP individual represents a solution, in this

case a function f . GP individuals’ functions are formed by the combination of ele-

ments in the terminal set T and the function set F . In EvoDAG, the terminal set T is

composed only by the input variables of the problem; this is T = {x1, . . . , xm}. On the

other hand, the function set for classification problems is defined as F = {
∑

60,
∏

60,

max5, min5, NB5, MN5, NC5, sin, tan, atan, tanh,
p·, | · |, hypot2}, where the subscript

indicates the number of arguments. The procedure that was used for defining the num-

ber of functions’ arguments is explained below. Table 1.1 describes the function set F

of EvoDAG for classification problems. As it can be observed, in the function set F ,

the Naive Bayes and Nearest Centroid classifiers are included, they are described as

follows.
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Table 1.1: Function set of EvoDAG

Symbol Number of Description
arguments∑

60 Sum of all arguments∏
20 Product of all arguments

max 5 Maximum of all arguments
min 5 Minimum of all argumentsp. 1 Square root of the argument
| · | 1 Absolute value of the argument
sin 1 Sine of the argument
tan 1 Tangent of the argument

atan 1 Arc tangent root of the argument
tanh 1 Hyperbolic tangent of the argument

hypot 2 Given the “legs” of a triangle, it return its hypotenuse,
√

x2
1 +x2

2

NB 5 Naive Bayes classifier with Gaussian distribution
MN 5 Naive Bayes classifier with Multinomial distribution
NC 5 Nearest Centroid classifier

Naive Bayes is a classifier based on the Bayes’ theorem with the “naive” assump-

tion of independence between every pair of features. Let be x1, ..., xm the input features

and y the output class, the Bayes’ theorem say that we can predict the output y given

the input variables based on the Equation 1.2.

P (y |x1, ..., xm) = P (y)P (x1, ..., xm |y)

P (x1, ..., xm)
(1.2)

Using the “naive” assumption of independence among features, we have the

Equation 1.3.

P (y |x1, ..., xm) = P (y)P (x1|y)...P (xm |y)

P (x1, ..., xm)
= P (y)

∏m
i=1 P (xi |y)

P (x1, ..., xm)
(1.3)

Since P (x1, ..., xm) is constant for all classes, we can say that P (y |x1, ..., xm) is

proportional to the numerator term in Equation 1.3. It is showed in Equation 1.4.

P (y |x1, ..., xm) ∝ P (y)
m∏

i=1
P (xi |y) (1.4)
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To calculate the predicted class ŷ given the variables x1, ..., xm , it is needed to

found the class that maximizes Equation 1.4, this is, Equation 1.5.

ŷ = argy maxP (y)
m∏

i=1
P (xi |y) (1.5)

For avoiding numeric errors in Equation 1.5, the sum of logarithms is used (see

Equation 1.6.

ŷ = argy maxlog
(
P (y)

)+ m∑
i=1

log
(
P (xi |y)

)
(1.6)

On Equation 1.6, the term P (y) is obtained based on the frequency of classes.

However, the term P (xi |y) is calculated based on the type of the features x1, ..., xm . The

versions of Naive Bayes, Naive Bayes with Gaussian distribution (NB) and Naive Bayes

with Multinomial distribution (MN), are described as follows:

• Naive Bayes with Gaussian distribution (NB) is for continuous variables. The

term P (xi |y) is calculated using a normal distribution. Formally, it is defined

as Equation 1.7, where µ and σ represent the average and the standard deviation

of variable xi only for the samples of class y .

P (xi |y) = 1p
2πσ2

exp

(
− (xi −µ)2

2σ2

)
(1.7)

• Naive Bayes with Multinomial distribution (MN) is for discrete variables. The

term P (xi |y) is calculated for each value u of variable xi . The probability P (xi ==
u|y) corresponds to the proportion of class y ’ s samples with the value u. For-

mally, it is defined as Equation 1.8, where Ny is the number of class y ’s samples,

and δ(·) returns 1 if its input is true and 0 otherwise.

P (xi == u|y) =
∑

x( j )∈y δ(x( j )
i == u)

Ny
(1.8)

Nearest Centroid (NC) is a simple classifier based on distances. It calculates

the centroid of each class as the average of all its samples in the training set. Then, for

predicting a new sample~x, it assigns the class that corresponds to the nearest centroid.
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Formally, it can be defined as Equation 1.9, where d(·, ·) is a distance metric, in EvoDAG,

d is implemented as the Euclidean distance, and ~µy represents the centroid of class y .

ŷ = argy mind(~µy ,~x) (1.9)

In order to provide an idea of the type of models produced by EvoDAG, Figure

1.7 presents a model of the Iris data set. The inputs (x0, . . . , x3,NB,MN,NC) are at the

bottom of the figure. The computation flow goes from bottom to top, being the output

the node in the top of the figure, i.e., Naive Bayes with Gaussian distribution.

Figure 1.7: Example of a model evolved by EvoDAG on the Iris dataset. The inputs are
at the bottom of the figure, and the output is on the top. Source: Own elaboration.

Evolution process

This subsection contains the EvoDAG’s process for evolving a classifier. Algorithm 2

presents a summary of this process. The first input of EvoDAG is the training set X .
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The second input is the fitness function f i t (i ndi vi dual ,X ) whose aim is to solve the

optimization problem defined in Equation 1.1. The fitness function f i t (i ndi vi dual ,X )

has two arguments, the first one is the individual, and the second one is the training

set X where the individual’s function is tasted. The output is the EvoDAG’s model that

corresponds to the function f that solves the optimization problem defined in Equa-

tion 1.1.

On the first step, the training set X = {( ~x(1), t (1)), . . . , ( ~x(n), t (n))} is randomly split

into a smaller training set Xtr ai ni ng , with the 50% of the samples, and a validation set

Xval i d ati on that contains the remaining elements. The objective of the training set is

to fit the function f solving the optimization problem showed in Equation 1.1, on the

other hand, the validation set aims to avoid the problem of overfitting. This is related

to the stopping criterion, which is explained below.

EvoDAG searches a function f that optimizes Equation 1.1 in a search space,Ω,

that is formed by all the combinations of elements in the function F and terminal T

sets. It is not possible to known and test all the elements inΩ. For that reason, a sample

ofΩ is tested using GP to enhance the search.

Based on [35, 37], each function in the function set F is associated with a set

of parameters θ that are estimated with ordinary least squares (OLS) using the target

and the individual’ semantics calculated over the training set Xtr ai ni ng . The aim is

minimizing the difference between the individual’s semantics and the target seman-

tics. The background of the use of parameters θ is described in Section 2.2. The ad-

dition is defined as
∑

k θk pk , where pk is an individual from population P . The clas-

sifiers are defined as NB(θ1p1, . . . ,θk pk ), MN(θ1p1, . . . ,θk pk ), and NC(θ1p1, . . . ,θk pk ).

The rest of the arithmetic functions, trigonometric functions, min and max are defined

as θ f (p1, . . . , pk ) where f is the function at hand, and p1, ..., pk are individuals in P .
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Specifically, in classification, the initial population P0 contains the classifiers

Naive Bayes with Gaussian distribution (NB), Naive Bayes with Multinomial distribu-

tion (MN), and Nearest Centroid (NC). Those classifiers take as arguments all the in-

puts {NB(θ1x1, . . . ,θm xm), MN(θ1x1, . . . ,θm xm), NC(θ1x1, . . . ,θm xm)}. In addition, P0

contains all the inputs {θx|x ∈ T }. In case that the number of elements in P0 is lower

than the population size, other elements are added using the following procedure. A

function fk is randomly selected from the function set F , and its k arguments are

randomly chosen from the terminal set T without replacement. This process con-

tinues until the population size has been reached. For example, let F = {NB,+, | . |}
and T = {x1, x2, x3}, then P0 starts with {NB(θ1x1,θ2x2,θ3x3),θ4x1,θ5x2,θ6x3}. This is

followed by randomly selecting a function and its parameters from T , assuming + is

selected, then P0 = {NB(θ1x1, θ2x2, θ3x3), θ4x1, θ5x2, θ6x3, θ7x3 +θ8x1}, assuming the

next function is | . |, then, P0 = {NB(θ1x1, θ2x2, θ3x3), θ4x1, θ5x2, θ6x3, θ7x1 + θ8x3,

θ9 | x2 |}. This process is repeated until the number of elements in P0 reaches the pop-

ulation size. All the parameters θ are estimated with ordinary least squares (OLS) using

the target and the individual’ semantics calculated over the training set Xtr ai ni ng .

Once the initial population P0 is created, the evolution starts using the steady-

state population model. Consequently, at the beginning, P =P0, and in each iteration,

P is updated by replacing a current individual, selected using a negative selection, with

an offspring that can be selected as a parent just after being inserted in P (see Algo-

rithm 2). The offspring creation process is similar to the one used to create the initial

population, but the difference is on the procedure used to select the arguments. That

is, a function fk is randomly selected from F , k represents the number of arguments,

which are selected from the population P using tournament selection or any of the

heuristics analyzed in this dissertation (see Chapter 3). The parameters θ associated to

f are optimized using OLS.

The process continues until the stopping criteria are met. Traditionally in EAs,

the evolution stops when a maximum number of generations is reached, or the fitness
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reaches a particular value. In this case, EvoDAG stops the evolutionary process using

early stopping. The validation set Xval i d ati on is used to perform the early stopping

and to keep the individual with the best performance. The evolution stops when the

fittest individual, on the validation set Xval i d ati on , has not been updated in a defined

number of evaluations (see Algorithm 2). The final model corresponds to the fittest in-

dividual on the validation set.

Algorithm 2: Evolution process of EvoDAG. The underlined steps corre-
spond to the ones that are analyzed in this dissertation.

Input: The training set, X

Input: The fitness function, f i t (i ndi vi dual ,X )
Output: An EvoDAG’s model that represents the function f that optimizes
Equation 1.1
Xtr ai ni ng ,Xval i d ati on ← randomly division of X ;
P0 ← the initial population ;
pval i d ati on ← the fittest individual based on Xval i d ati on ;
r ound s ← 0;
while r ound s < M axE ar l yStoppi ng Round s do

fk ← A function that is randomly selected from the function set F ;
for i from 1 to k do

par enti ← An individual selected from the population P for being a parent;

Add par enti as argument of fk ;
end
θ← The parameters of fk that are calculated using OLS and Xtr ai ni ng ;
new ← The new offspring created using fk and its arguments;
ol d ← An individual selected from the population P using negative selection;

Delete ol d from the population P ;
Add new to the population P ;
if f i t (new,Xval i d ati on) > f i t (pval i d ati on ,Xval i d ati on) then

pval i d ati on ← new ;
r ound s ← 0;

else
r ound s ← r ound s +1;

end
end
Return pval i d ati on ;
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Implementation

EvoDAG’s implementation is based on the proposal of Castelli, Vanneschi, and Silva

[10, 100]. Only the semantics of individuals in the current population are stored, but

the trace of all individuals is stored.

We said that the initial population is created using the inputs of the problem and

the classifiers. Based on the same example, where F = {NB,+, | . |} and T = {x1, x2, x3},

the first individuals from the initial population P0 are {NB(θ1x1,θ2x2,θ3x3),θ4x1,θ5x2,θ6x3}.

The idea of using as first individuals the inputs and classifiers is because by doing this,

it is simpler to calculate their semantics, only it is needed to compute the parameters θ

and the classifiers’ outputs. For creating each one of the remaining individuals in P0,

the following process is executed. A function fk is randomly selected from the func-

tion set F , and its k arguments are randomly chosen from the terminal set T without

replacement. For all individuals in P0 the semantics vectors are stored in memory.

Assuming P0 = {NB(θ1x1, θ2x2, θ3x3), θ4x1, θ5x2, θ6x3, θ7x1 +θ8x3, θ9 | x2 |, ...}, a repre-

sentation of individuals and their semantics can be seen in Figure 1.8.

Figure 1.8: Example of EvoDAG’s individuals and their semantics in the initial popula-
tion P0. Source: Own elaboration.

Once the initial population is created, in each iteration, one offspring is gener-

ated, and it replaces another one from the population. Figure 1.9 shows an example

where the blue and the red individuals are added and removed from P , respectively.

As it was explained above, for creating an offspring a function fk is chosen from F , and
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its k arguments are selected from the population P , then, the parameters θ associated

to fk are optimized using OLS. EvoDAG calculates the semantics of offspring based on

the application of their root function and the semantics of their parents or arguments.

It is not needed to evaluate the whole tree structure. Having the semantics of parents,

it is only necessary to apply the function that the offspring has in its root node. It is rep-

resented by the arrows in Figure 1.9. Also, when an offspring is created, its semantics

is stored. For avoiding memory problems, the individual’s semantics that is removed

from P is deleted. Indeed, the new offspring semantics is stored in the memory space

of the individual’s semantics that will be removed. Then, the memory used is always

constant, and it depends on the training samples and the population size.

Figure 1.9: Example of EvoDAG’s individuals and their semantics when a new offspring
is created. Source: Own elaboration.

Representation of Classification Problems

Specifically, for solving classification problems, EvoDAG uses the one-vs-all scheme.

We affirmed that in a supervised learning problem, the dataset is composed of tuples

of data samples ( ~x(i ), t (i )), where ~x(i ) represents the input and t (i ) the output, which

corresponds to a categorical value in a classification problem. Then, for transforming

the classification problem in k different ones, where k is the class number, the output

is represented as a vector ~t (i ) with k entries, where we assign 1 to the entry that corre-

sponds to the real class and −1 to the other classes.
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Instead of evolving one tree per problem, as done, for example, in [69], Graff et

al. decided to use only one tree and optimize k different θ parameters, one for each

class. The result is that each node outputs k values, and the class is the one with the

highest value. In the case of the classifiers, Naive Bayes and Nearest Centroid, the out-

put is the log-likelihood.

This representation also changes the semantics of individuals. As we explained

in Section 1.3, the individual’s semantics is the vector whose entries are all the re-

sponses of the individual’s function to all the input-vectors. In this sense, the semantics

of the individual P corresponds to a vector ~Sp ∈ Rn , where n represents the number of

input-vectors. However, in EvoDAG, each individual contains an array of semantics

vectors, one per class, where each vector contains the semantics for a specific class.

Ensemble

It is well known that in evolutionary algorithms, there are runs that do not produce an

acceptable result. Then, to improve the stability and also the performance of EvoDAG,

Graff et al. decided to use Bagging [6] in their approach.

Thirty models are fitted, each one uses only half training samples. The samples

are randomly selected, and different seeds are used in the random function. A bagging

estimator can be expected to perform similarly by either drawing n elements from the

training set with-replacement or selecting n
2 elements without-replacement (see [26]).

The ensemble prediction corresponds to the average of the thirty models. In Chapter

4, an analysis of the number of models in the ensemble is presented.

Optimization of Parameters

EvoDAG, as all evolutive algorithms, has some parameters that need to be defined.

EvoDAG’s authors decided to use the technique random search for the optimization
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of hyper-parameters [5], proposed by Bergstra and Bengio.

For adjusting the parameters’ values, they used thirteen binary classification

datasets that were divided into the training and test sets. Those datasets are described

in [36]. First, they defined possible values for each parameter (see Table 1.2), including

the functions’ number of arguments (see Table 1.3). Then, they tasted different com-

binations of parameters’ values. They used Balanced Error Rate (BER) as performance

metric of EvoDAG’s classifiers. BER = 100
K

∑K
i=1

f ni
ti

, where K is the number of classes,

i represents the i -th class, f ni is the number of false negative of class i , and finally,

ti is the number of elements of class i . For each dataset, they executed 734 experi-

ments where the parameters’ values were randomly selected from the ones presented

in Tables 1.2 and 1.3. In each experiment, they executed EvoDAG three times and cal-

culated the median of BER. For each dataset, the best parameters correspond to the

ones with the smallest median BER. Finally, for having a generalization of parameters

that work well in several datasets, they calculated the parameters’ values as the average

of the best values of the thirteen datasets. Based on that procedure, they defined the

EvoDAG’s parameters as the ones presented in Table 1.4.

Table 1.2: The possible values of EvoDAG’s parameters

Parameter Possible values

Population size 100, 200, 500, 1000, 2000, 4000
Tournament size 2, 5, 10, 20

Early stopping rounds 500, 1000, 2000, 4000

1.5 Summary

In this Chapter, we introduced the key concepts of Evolutionary computing (EC), Ge-

netic Programming (GP), Semantic Genetic Programming (SGP), and EvoDAG, the GP

system that we used for implementing and testing our proposed selection heuristics.

Evolutionary computing (EC) is a research area within computer science, as the

name suggests, it is a particular flavor of computing, which draws inspiration from the
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Table 1.3: The possible number of arguments of EvoDAG’s functions. When the num-
ber of arguments is equal to zero, it indicates that the function is not included in the
function set.

Function Possible number of arguments Function Possible number of arguments∑
2, 5, 10, 20, 30, 40, 50, 60, 70 sin 0, 1∏
0, 2, 5, 10, 20, 40 cos 0, 1

max 0, 2, 5, 10, 20, 40 tan 0, 1
min 0, 2, 5, 10, 20, 40 asin 0, 1
NB 0, 2, 5, 10, 20, 40 acos 0, 1
MN 0, 2, 5, 10, 20, 40 atan 0, 1
NC 0, 2, 5, 10, 20, 40 tanh 0, 1p· 0, 1 atan2 0, 2
| · | 0, 1 hypot 0, 2

Table 1.4: EvoDAG’s parameters. The functions’ subscripts represent the number of
arguments.

Parameter Value

Population size 4000
Tournament size 2
Stop criterion Early stopping, 4000 rounds

Function set F

∑
60,

∏
60, max5, min5, NB5, MN5, NC5,

sin, tan, atan, tanh,
p·, | · |, hypot2

Number of models in the Ensemble 30

process of natural evolution. The key aspects to take into account when the implemen-

tation of an evolutive algorithm is performed are the representation, fitness function,

selection, and variation operators: crossover and mutation.

GP evolves a population of computer programs and can be used for solving a

variety of problems. While evolutive algorithms are typically applied to solve optimiza-

tion problems, GP could instead be positioned in machine learning. The semantics of

an individual is a vector whose entries are all the responses to the input vectors. The

term Semantic Genetic Programming (SGP) is used when GP uses semantics in the evo-

lutionary process.

EvoDAG, a GP system proposed by Graff et al. [36], is a python library that solves

supervised learning problems. EvoDAG searches a model combining elements from
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the terminal set T and the function set F . The terminal set T is composed only by

the input variables of the problem; this is T = {x1, . . . , xm}. The function set for clas-

sification problems is defined as F = {
∑

60,
∏

60, max5, min5, NB5, MN5, NC5, sin, tan,

atan, tanh,
p·, | · |, hypot2}, where the subscript indicates the number of arguments.

We used EvoDAG for implementing and testing the proposed selection heuristics, in

addition to classical and state-of-the-art selection techniques.
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Chapter 2

Related Work



2 Related Work

This chapter presents the literature review related to the topic of this dissertation. In

Chapter 1, we described Semantic Genetic Programming, Vanneschi divided the work

that is related to semantics in indirect and direct [99]. The indirect methods are the

ones that apply operators or methodologies on the trees’ structures and use seman-

tics for validating the results. The most representative work of indirect methods is

described in the first section of this chapter. Section 2.2 presents the methodologies

that work directly in the semantic space. This approach is more recent than indirect

methodologies. According to Vanneschi [99], these techniques can improve the learn-

ing process and be executed efficiently. A review of how fitness and selection have been

implemented in GP is presented in Section 2.3. This dissertation has as objective apply

GP for solving classification problems, Section 2.4 presents the work that also use GP

in classification.

2.1 Indirect Semantic Genetic Programming

In Chapter 1, we explained individuals’ semantics and how the supervised learning

problems can be seen from the point of view of Semantic Genetic Programming (SGP).

The use of individuals’ semantics and also target’s semantics is very useful for design-

ing operators and GP systems. Krawiec [52] affirmed that aware semantic methods

make search algorithms better informed. In this section, we review some work that

uses SGP for improving GP in supervised learning problems.

Bryan proposed in [8] a technique that calculates the canonical representation

of syntax trees of GP individuals for binary problems using truth tables. Therefore, in-

dividuals with similar semantics have the same representation. Beadle and Johnson [3]

used that representation to propose a crossover operator that measures the semantic

equivalence between parents and their offspring. Each time the crossover operator is

applied, they reject the offspring that is semantically equivalent to their parents and
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repeat the crossover. They also proposed a mutation operator [4] that measures the

individual’s changes after mutation, and it is allowed only if the individual is seman-

tically different after the mutation. The result of these operators is the increment of

population diversity, and as a consequence, the improvement of the GP performance

for binary problems.

Nguyen et al. [73] proposed two distance metrics between individuals, one based

on the syntax tree structure, and the other using individuals’ semantics. In the first

one, the same tree structure is constructed adding nodes if necessary. Then, the dis-

tance between the nodes in the same position is calculated, if the nodes have the same

symbol, the distance is 0, otherwise it is 1. Finally, the distance between individuals is

the sum of all node distances. The second distance is calculated base on the Sampling

Semantics (SS) of individuals and it is called Sampling Semantics Distance (SSD). They

defined the Sampling Semantics of an individual T as ST = {s1, s2, ..., sn}, and it is cal-

culated by the evaluation of the function f that the individual T represents in a point

series P = {p1, p2, ..., pn}, so si = f (pi ), i = 1,2, ...,n. The SSD between two individu-

als is defined as Equation 2.1, where T1 and T2 are the individuals, and {ui }i=1,2,...,n y

{vi }i=1,2,...,n are the sampling semantics of each individual.

SSD(T1,T2) = (|u1 − v1|+ |u2 − v2|+ ...+|un − vn |)/n (2.1)

Quang Uy et al. used the Sampling Semantics Distance to create the Semantic

Similarity based Crossover operator [96] and the Semantic Similarity based Mutation

operator [83]. First, they defined the concepts of Semantically Equivalent (SE) and Se-

mantic Similarity (SSi) between two individuals T1 and T2, whose sampling semantics

are St1 and St2 respectively, as follows. The individuals are SE if their sampling seman-

tics distance, SSD, is less than a threshold. It is formally defined in Equation 2.2, where

ε is a predefined constant. On the other hand, the individuals are SSi if their sampling

semantics distance is between a range of values, in other words, it is small but no too
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much. It is formally defined in Equation 2.3, where α and β are predefined constants.

The crossover operator searches for a crossover point in each parent in such a way that

the subtrees are semantically different but no too much, it means, the subtrees need to

be semantically similar. The mutation operator allows replacing a subtree of the indi-

vidual only if the new subtree is semantically similar to the one being replaced. Using

these operators, they could control the changes in individual fitness.

SE(T1,T2) = tr ue if SSD(St1,St2) < ε , el se f al se (2.2)

SSi (St1,St2) = tr ue if α< SSD(St1,St2) <β , el se f al se (2.3)

Semantic Control Crossover [40], introduced by Hara et al., used semantic simi-

larity between subtrees to control the global and local search. The operator combines

the individuals A and B as follows. First, a point crossover is randomly selected from

A, and the semantics of the subtree at that point is calculated. Then, the semantics of

all subtrees in B are calculated, and the semantic distances between all the subtrees in

B and the subtree selected in A are calculated. If it is a regression problem, they use

Euclidean distance for measuring semantic similarity, and if it is a Boolean problem,

the Hamming distance is used. The selection of the crossover point in B uses roulette

selection based on the semantic distance d power to α, this is, dα, where α changes

at each iteration based on the Equation 2.4. αmax and αmi n are the minimum and

maximum values of α respectively (in the experiments, the values 2 and -2 were used),

G is the maximum number of generations, and t is the current generation. Their re-

sults were that a global search is performed at the beginning of the process and local

search in the last generations. In other words, in the beginning, the crossover between

trees with different semantics is prioritized, while late in the process, the opposite is

promoted, i.e., crossover between trees with similar semantics.

α(t ) =αmax − t (αmax −αmi n)

G
(2.4)
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Graff et al. proposed the Semantic Crossover Operator based on the Partial Deriva-

tive Error [30]. The operator combines two individuals as follows. First, it randomly

selects a crossover point in the first parent. Based on the back-propagation algorithm,

the partial derivative of the fitness function in the crossover point is calculated with

the aim of knowing whether the values in the node need to be higher or lower than the

current ones. Then, a subtree in the second parent is searched, in such a way that when

it is used as a crossover point increases or decreases the value of the function. Graff et

al. also proposed the Semantic Point Mutation operator based on the Partial Deriva-

tive Error [29]. This operator randomly selects a mutation point in the individual tree

with the restriction that it must be a function node. The partial derivative of the fitness

function in that point is calculated in order to know whether the values in it need to be

higher or lower than the current ones. Finally, a function that increases or decreases

the value in the selected point, and with the same arity is searched in the function set.

Furthermore, to promote the use of their operators, they proposed differential func-

tions that simulate the behavior of not differential functions like if, max, min y argmax.

Following the same direction, Suárez et al. proposed the Semantic Crossover operator

based on the Second Partial Derivative of the Error Function [92]. The objective of the

second partial derivative is to calculate the optimum value of the node using the New-

ton method (see Equation 2.5). The process is very similar. First, a crossover point is

randomly selected. The first and second partial derivatives are calculated. Finally, the

crossover point in the second parent whose semantics are most similar to the calcu-

lated values with the Newton method is selected. Their results showed that the use of

these operators improves the performance of GP for symbolic regression problems.

X n+1 = X n − f ′(X n)

f ′′(X n)
(2.5)
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2.2 Direct Semantic Genetic Programming

Vanneschi affirmed in [99] that the main problem of methods that use the semantics

in an indirectly way, as the operators presented in the previous section, is related with

the rejection of children during the evolutive process. Typically, the individuals are

constructed using the operators based on syntactic operations, and the semantics cri-

teria require individual evaluation. It can affect the learning speed of GP. Nevertheless,

the operators that use the semantic information in a directed way, like the ones pre-

sented in this section, never reject individuals once they are evaluated, in this sense,

they can be executed efficiently. Moreover, Vanneschi said that indirect methods have

been widely studied, so it could be said it is a mature area. On the other hand, the di-

rected methods are more recent, and much of its potential is to be seen.

One of the first geometric semantic crossover operator was proposed by Kraw-

iec and Lichocki in [53]. The operator tries to generate offspring whose semantics is

similar to a linear combination of their parents. It uses another crossover operator,

which can be the classic one described in Section 1.4. Given two parents P1 and P2, the

crossover between them is applied k times, and all the possible children are stored. The

expression in Equation 2.6 is calculated for each offspring O, where d(·, ·) represents a

distance between the individuals’ semantics. The two children with the smaller values

are selected as offspring. The idea is to generate offspring whose semantics are close

to their parents’ semantics, but also, they promoted equidistance between parents and

offspring semantics.

d(P1,O)+d(P2,O)+|d(P1,O)−d(P2,O)| (2.6)

Krawiec extended his work in [51]. He defined the geometric crossover operators

as operators that generate offspring O given two parents P1 and P2 with the charac-
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teristic showed in Equation 2.7, where d(·, ·) is a distance measure. In addition, he de-

fined the medial crossover operators as the ones that minimize the divergence functions

showed in Equation 2.8 and 2.9. In the same work, Krawiec proposed the crossover op-

erator PMX which considers some subtrees interchanges between parents and selects

the interchange that minimizes the divergence functions dG and dE .

d(O,P1)+d(O,P2) = d(P1,P2) (2.7)

dG (o, p1, p2) = d(o, p1)+d(o, p2)−d(p1, p2) (2.8)

dE (o, p1, p2) =
∣∣∣d(o, p1)−d(o, p2)

∣∣∣ (2.9)

Moraglio et al. [67,68] proposed Geometric Semantic Genetic Programming (GSGP).

They proposed two operators, crossover and mutation. Given two parents, P1 and P2,

the crossover operator generates an offspring as Equation 2.10, where r is a value be-

tween 0 and 1. The mutation operator for P was defined as Equation 2.11, where R1

and R2 are random trees, and ms is a real value within the range [0,1]. Their work called

the attention of the GP scientific community because the crossover operator produces

an offspring that stands in the segment joining the parents’ semantics. Therefore, off-

spring fitness cannot be worse than the worst fitness of the parents, and this property

transforms the fitness landscape into a cone. Unfortunately, the offspring is always

bigger than the sum of the size of its parents. It makes the use of this operator impos-

sible in practice, and it compromises the GP essence: the ability to construct legible

solutions and interpretable by humans [99]. Figure 2.1 shows an example of the GSGP

crossover operator.

r ·P1 + (1− r ) ·P2 (2.10)

P +ms · (R1 −R2) (2.11)
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Figure 2.1: Illustration of Geometric Semantic Genetic Programing crossover operator.
Source: Own elaboration.

Krawiec and Pawlak proposed Locally geometric semantic crossover (LGX) [54,

55, 58]. It is an operator that approximates the crossover operator of GSGP but with

the idea of reducing bloat. LGX first identifies the structurally common region [81] in

the parents P1 and P2, this is, the set of tree node locations that occur in both parents.

Then, in each parent, a crossover point is randomly selected from that region, priori-

tizing intern nodes. The semantics of the subtrees p ′
1 and p ′

2 rooted in the crossover

points are calculated. The midpoint between those subtrees in the semantic space also

is calculated as sm = s(p ′
1)+s(p ′

2)
2 . sm represents the program that is perfectly geomet-

ric to p ′
1 and p ′

2. Finally, the procedure p ′ whose semantics s(p ′) is the closest to sm

is searched in a library of procedures L , it means, p ′ = ar g mi np ′εL ||s(p ′)− sm ||. Af-

ter some analysis, the authors noticed the election of p ′ in a deterministic way causes

premature convergence in the searching process, so, they decided to randomly choose

p ′ of the k procedures whose semantics are closer to sm . For searching the k nearest

neighbors, they used the data structured kd-trees.

Krawiec, Pawlak, and Wieloch introduced Approximating geometric crossover

(AGX) [56, 79]. AGX aims to replace subtrees in individuals for generating offsprings

whose semantics are close to the center of the segment joining the parents’ semantics
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using the backpropagation algorithm. Given two parents, P1 and P2, AGX calculates

the parents’ semantics s(p1) and s(p2). The point in the center of the segment joining

s(p1) and s(p2) is calculated as m = s(p1)+s(p2)
2 . A crossover point is randomly selected

in both parents. Then, in an independent way for each parent, the backpropagation

algorithm is used to propagate the expected semantics m and calculate the desired se-

mantics in the crossover point. Finally, from a library of procedures L , the ones whose

semantics are the closets to the desired semantics are selected, and they replace the

subtrees in the crossover points to generate the offsprings.

Pawlak et al. affirmed in [78] that the use of crossover and mutation operators

focusing on the syntax trees is a complex process because a small change in the in-

dividual syntax can result in a dramatic change in its response. On the other hand,

a big change in the syntax cannot affect the response. Nevertheless, Semantic Ge-

netic Programming changes this because it gives information about the individuals’

behavior. Furthermore, Geometric Semantic Genetic Programming not only gives in-

formation about the individuals’ behavior but also gives a multidimensional metric

space (the semantic space), which is unimodal. However, despite this attractive prop-

erty, the searching process is not easy because the semantic space is not the searching

space; the searching space is the genotypic space. In the same work, they compared

the Moraglio’s crossover operator SGX [67, 68] with their operators LGX [54, 55, 58] and

AGX [56, 79]. Of the comparison, they concluded that although SGX is attractive for

their potentiality to find a perfect solution in a short time, it has the inconvenient of

generating huge trees. While on the other hand, LGX and AGX produce smaller trees

with a good generalization capacity.

Pawlak et al. proposed the Random Desired Operator (RDO) [79]. It is a mutation

operator that aims to propagate the target semantics. RDO first randomly selects the

mutation node, then a backpropagation algorithm calculates the desired semantics in

that node as follows. The propagation starts in the root node with the target semantics.

The inverse of the function is used for calculating the desired semantics in the child
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node. Then, the algorithm moves to that child, and the propagation is also applied

there. This process is repeated until the desired semantics for the node of interest is

calculated (see Figure 2.2). Once the desired semantics is calculated in the mutation

node, a procedure whose semantics are the closets to the desired semantics is searched

in a procedure library L . Finally, the found procedure replaces the subtree positioned

in the mutation node. Virgolin et al. proposed in [101] a linear scaling for RDO. Let the

MSE between the dependent variable y and the tree output o be the fitness function for

regression (see Equation 2.12), they introduced a scaled version of MSE incorporating

the scalar values a and b as Equation 2.13.

MSE(y,o) = 1

n

∑
i

(yi −oi )2 (2.12)

MSE(y,o) = 1

n

∑
i

(yi − (a +boi ))2 (2.13)

Figure 2.2: Illustration of Random Desired Operator (RDO). Source: Own elaboration.

In [74], Nguyen et al. compared the operators: SSGX [74], RDO [79], AGX [57],

and Moraglio’s geometric semantic crossover operator (SGX) [67]. Based on their ex-

periments, they concluded that: (1) RDO was the best for regression problems and

SSGX the second better; (2) AGX, RDO and SSGX had smaller solutions than SGX; and

(3) AGX and RDO had an execution time higher than SSGX. They were usually 8 or 10
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times slower than SSGX.

RDO was extended by Szubert et al. when Forward Propagation Mutation (FPM)

[95] was introduced. FPM uses a combination of forward and back-propagation to find

a combination of unitary and binary functions that are the most similar to the desired

behavior. First, it randomly selects a node in the tree and separates it into a subtree

p1 positioned in the selected node and a context p2. The subtree p1 is extracted from

the tree and used as the initial point from the new individual. For generating the new

context, it assumes a structure with four new nodes: (1) u that represents a unitary

function as sin, cos, log or exp; (2) b that is a binary function as +,-,* or /; (3) x that

represents a multiplication; and finally, (4) c that is a real value. Figure 2.3 shows FPM

structure. An exhaustive search of all possible combinations between unitary and bi-

nary functions (u,b) is performed. For each pair of functions (u,b), the semantics of

the subtree p1 is forward propagated to the root node. Then, the target semantics and

the invert function of b are used for calculating the desired semantics d for the node x.

A tree whose semantics is the closets to d is searched in a procedure library L , this is:

p∗
i = argminpi arccos s(pi )d

‖s(pi )‖‖d‖ . The real value c is used to scale the semantics of p∗
i to

bring it closer to d . Finally, the combination (u,b) whose individual has better fitness

is selected.

Figure 2.3: Illustration of Forward Propagation Mutation (FPM). Source: Own elabora-
tion.

Graff et al. proposed a new crossover operator based on projections in the phe-
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notype space [37]. It creates a plane in the semantic space using the parent semantics

and the origin of the space. The offspring is calculated as the projection of the target

in that plane. Given the parents semantics P1 and P2, and the target semantics T , the

offspring is calculated as Equation 2.14 where α and β are real values that are calcu-

lated solving the equation A[α,β]′ = T where A = (P1,P2). It implies the offspring will

be at least as good as the best parent. An application is presented in [34], where the

objective is determined whether a text has a positive, negative, or neutral opinion ac-

cording to a specific topic. Figure 2.4 shows the comparison between Moraglio’s and

Graff’s crossover operators in the semantic space.

O =αP1 +βP2 (2.14)

a b

Figure 2.4: Comparison of Moraglio’s and Graff’s crossover operators. a) Moraglio’s ge-
ometric crossover. b) Graff’s projection crossover. Source: Own elaboration.

Memetic Genetic Programming based on orthogonal projections in the pheno-

type space [35] was also proposed by Graff et al. In that work, they used a linear com-

bination of k parents as
∑

k αk Pk , with the idea of optimizing the coefficients {αi } with

ordinary least squares (OLS) to guarantee the offspring is the best of its family. As a

result, the fitness of the generated tree is always better or equal than any internal tree.
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It was not the first time where parameters are added to GP nodes, Smart and Zhang

defined the Inclusion Factors [90] as numeric values between 0 and 1 assigned to each

node in the tree structure, except the root node. This value represents the inclusion

proportion of the node in the tree. In their work, they only used the sum and multi-

plication functions. The sum function without inclusion factors can be seen as a1 +a2

and with inclusion factors as x1a1 + x2a2. For calculating the inclusion factors, they

used gradient descent applied to the cost function C =
∑N

j=1(y j−Y j )2

2 , where Y j and yi are

the desired and the actual outputs for the training sample j , and N is the number of

training samples.

Castelli et al. presented in their work Geometric Semantic Genetic Programming

with Local Search [12] a mutation operator, based on Moraglio’s mutation operator, that

also uses parameters. In this operator, an individual P is modified with the Equation

2.15, where R1 and R2 are random trees, and, αi ε R. {αi } are calculated using the tar-

get semantics and OLS for getting the better linear combination of the original and the

random trees. Castelli et al. extended their work in [9] applying Local Search to all the

individuals during a separate step after mutation and crossover. For a GP tree T , they

calculated another tree as T ′ = αT +β, where α and β are optimized with OLS min-

imizing the error between the individual semantics and target semantics. Moreover,

they generalized the idea and transformed it into a regression problem T ′ =∑
j α j f j (T ),

where f j :R→R.

O =α0 +α1P +α2(R1 −R2) (2.15)

Nguyen et al. proposed the Subtree Semantic Geometric Crossover (SSGX) [74]

operator, which uses the semantic similarity between subtrees to approximate the ge-

ometric property of the Moraglio’s operators for producing smaller individuals’ trees.

The operator works as follows. First two parents P1 and P2, and a probability value ε are

selected. Whether a random number r ∈ [0,1] is smaller than ε, the new subtree geo-

metric operator is used; if not, the traditional operator is applied. In the case of the new
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operator is selected, several subtrees which satisfy a defined size are randomly selected

from P1, except the whole tree P1. The selected subtree St1 is the one whose semantics

are the closest to P1 semantics. A subtree St2 is selected from P2 following the same

process. The offspring O1 and O2 are generated by combining subtrees St1 and St2 as

Equations 2.16 and 2.17, where TR is a real value between 0 and 1 or a random tree

with co-domain [0,1] . The size constant helps to control the size of individuals, and

it needs to be inside of the established range [α,β]. They conclude that the use of this

operator approximates the geometric property at a subtree level, and it helps to reduce

the exponential growth of individuals.

O1 = TR St1 + (1−TR )St2 (2.16)

O2 = (1−TR )St1 +TR St2 (2.17)

Hara et al. proposed Deterministic Geometric Semantic Crossover [39]. It is

based on the Moraglio’s geometric semantic crossover operator. Given the parents’ se-

mantics P1 and P2, and the target semantics T , they calculate a new offspring O based

on the geometric crossover operator defined in Equation 2.10. But, instead of calculat-

ing r as a random number between [0,1], they calculate it as r = |P1P2|−|P1T |cosθ
|P1P2| , where

θ is the angle between the semantics of the target and the second parent using the first

parent’ semantics as reference, this is, θ = ∠T P1P2. In other words, the offspring is

the projection of the target in the line formed by the parents. This operator used the

target semantics effectively to determine the optimal combination of parents, and as a

result, the performance of GSGP is improved. However, the problem of the bloat phe-

nomenon continues.

Chen et al. proposed Angle-Driven Geometric Semantic Genetic Programming

(ADGSGP) [14–16]. Their work attempts to further explore the geometry of geomet-

ric operators in the search space to gain an improvement in genetic programming for
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symbolic regression. The angle-awareness brings new geometric properties that are

expected to provide greater leverage for approximating the target semantics in each

operation, and more importantly, be resistant to overfitting. The angle-distance be-

tween the semantics of two individuals is calculated as the angle γ between the two

semantics’ vectors ~V1 and ~V2, Equation 2.18, where || · || represents the vector norm.

However, they used the angle between the relative vectors. A relative vector is the one

between one parent’s semantics and the target semantics (see Equation 2.19). Based

on this, they proposed Angle-Driven Selection, Perpendicular Crossover, and Random

Segment Mutation. Angle-Driven Selection (ADS) selects a pair of parents that not only

have good fitness values but also are far away from each other regarding the angle-

distance of their relative semantics. It is described in detail in Section 2.3. Perpendicu-

lar Crossover (PC) generates a child point standing on the line crossing the two parents,

which follows the theoretical framework of GSGP. Moreover, the relative vector of this

child and the target semantics is perpendicular to the vector defined by the two par-

ents, similar to Hara’s proposal [39]. Random Segment Mutation (RSM) was inspired in

RDO [79]. In RSM, the offspring stands on the intervals between the parents and the

target semantics. In this operator, the offspring is calculated as Equation 2.20, where P

and T represents the semantics vectors of the parent and the target, respectively, and

k ∈ [0,1]. The experiments show that the angle-driven geometric operators not only

drive the evolutionary process to fit the target semantics more efficiently but also im-

prove the generalization performance.

γ= arccos

(
~V1

||~V1||
·
~V2

||~V2||

)
(2.18)

γr = arccos

(
~t − ~V1

||~t − ~V1||
· ~t −

~V2

||~t − ~V2||

)
(2.19)

O = P +k(T −P ) (2.20)
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2.3 Fitness and Selection in Genetic Programming

Vanneschi et al. affirmed that since the beginning of GP, many contributions have

shown the importance of the population diversity because it can drastically affect the

GP performance. Also, the semantic diversity is more important than structural di-

versity [99]. Some work has been proposed to change the fitness function for pro-

moting population diversity. Novelty Search [62] presents an extreme case where the

fitness function is replaced by individuals’ novelty. The novelty of the individual P is

computed as the average of the distances between P and its k-nearest neighbors in

the semantic space. The main idea of Novelty Search is to promote population diver-

sity. Rather than viewing open-ended evolution as an adaptive competition, it can be

viewed simply as a passive drift through the lattice of novelty. Nguyen et al. proposed

Fitness Sharing [73], a technique that promotes dispersion and diversity of individuals.

Their proposal consisted of calculating the individual fitness as Equation 2.21, where

mi is approximately equal to the number of individuals that behave similarly to in-

dividual i . For calculating the individuals that behave similarly, they used a distance

based on semantics.

f ′
i = fi (mi +1) (2.21)

Ruberto et al. defined in [85] the Error Vector and Error Space. The individual

error vector ~ep is defined as Equation 2.22, where P represents the individual semantics

and t the target semantics.

~ep = P − t (2.22)

It can be conceived as a point in an n-dimensional space called error space where vec-

tor t is the origin. There are two important properties in this space: Optimally Aligned

Individuals and Optimally Coplanar Individuals. The first one is defined as two indi-

viduals A, and B are optimally aligned if it exists a scalar k such that Equation 2.23 is

accomplished. In other words, the individuals are optimally aligned if their respective
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error vectors are directly proportional, with a proportional constant k.

~e A = k ~eB (2.23)

Furthermore, if we find two aligned individuals we can calculate the optimal global

solution as P∗ = 1
1−k A − k

1−k B . The second property says that three GP individuals A,

B , and C are optimally coplanar if the bi-dimensional plane on which ~e A, ~eB , and ~eC

lie also intersects the origin of the Cartesian system in the error space. In this case,

three equations are proposed in order to calculate the optimal global solution. They

extended their work in [13], where two GP systems for exploiting alignment in the error

space were proposed. The objective of the first one, ESAGP-1, is to find two individ-

uals that are optimally aligned. For that reason, they used a fitness function that has

no relationship with the distance to the target in the semantic space. To define this

new fitness function, ESAGP-1 calculates a particular point in the error space that they

called center of attraction. The fitness of an individual is the angle between its error

vector and the attractor, and it has to be minimized. In other words, small angles are

better than large ones. The second GP system was called ESAGP-µ. It can be seen as a

generalization of ESAGP-1 aimed at finding three optimally coplanar individuals. In a

recent document, Vanneschi et al. presented the first usable alignment-based genetic

programming system, called Nested alignment genetic programming (NAGP) [98]. They

used individuals that contain several programs. They called them multi-individuals.

The idea is to have pairs of programs where the fitness was the angle between their

respective error vectors. For accomplishing that, they proposed a selection scheme

based on five selection criteria, which had been organized into a nested tournament.

The objectives were: (1) promote diversity; (2) maximize the value of the k constant in

Equation 2.23; (3) minimize the sum of the errors; (4) minimize the angle between the

error vectors; and, (5) reduce the error of the reconstructed expression.

The most used parent selection scheme in GP is tournament selection based on

fitness [22]. However, in this section, we discuss some works that have proposed new

methodologies of parent selection for improving the GP performance.
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Galvan-Lopez et al. [27] applied crossover only to those individuals whose dif-

ference in behavior is greater than a defined threshold for every element of the training

set. Chu et al. proposed two tournament selection techniques that use a statistical

test to compare the error vectors of individuals [17, 18]. The first technique is called

Statistics-TS1. Similar to the standard tournament selection, several individuals are

randomly selected and compared. Wilcoxon signed-rank test is applied to the error

vectors of these individuals. For a pair of individuals, if the test shows that they are

statistically different, the individual with better fitness is the winner. Conversely, if the

test confirms that those individuals are not statistically different, a random individual

is selected from the pair. The winner is tested against other individuals, and the process

is repeated for all individuals in the tournament. The second tournament selection is

called Statistics-TS2; it is similar to Statistics-TS1, but it aims at reducing code growth

in the GP population. In Statistics-TS2, if the individuals are not statistically different,

then the individual with the smallest size is selected from the pair. They tested their

tournament selection techniques using eighteen multivariate regression problems and

observed that the proposed method helps to reduce code bloat and the generalization

error.

As we mentioned in Section 2.2, Hara et al. proposed Deterministic Geomet-

ric Semantic Crossover [39]. Later, they introduced Deterministic Geometric Semantic

Genetic Programming with Optimal Mate Selection [38], a methodology for selecting

parents in such a way that the line connecting them is close to the target in the se-

mantic space. The first parent Tp is selected by tournament selection based on fit-

ness. The second parent is selected based on the positional relationship, with the aim

that the line connecting both parents will be closest to the target point in the semantic

space. For choosing the second parent, for all the individuals Ti , the cosine distance on

∠PTp Ti is calculated, where P represents the target semantics vector. The individual

with the largest cosine distance is selected as a mate of Tp . Then, they combine the

parents using the Deterministic Geometric Semantic Crossover operator. Their results

53



confirm that their method has better performance than Moraglio’s geometric crossover

in several symbolic regression problems.

Angle-Driven Selection (ADS) was proposed by Chen et al. [14–16]. It aims to se-

lect a pair of parents that not only have good fitness values but also are far away from

each other regarding the angle-distance of their relative semantics. The first parent is

selected by tournament selection based on fitness. The second parent is selected using

an algorithm that tests several candidates, chosen by tournament selection based on

fitness, and chooses the one with the large angle-distance between its relative seman-

tics and the first parent relative semantics. According to the authors, ADS brings several

benefits to the evolutionary process. First, ADS helps to decrease semantic duplicates.

Since these parents generally have different semantics and the segment between their

points in the semantic space is much larger than nearby parents. It can potentially

maintain/increase the semantic diversity of the population. Second, the convex hull

of the far-away parents becomes larger, which will increase the probability of covering

the target semantics, and has a more accurate fitting to the target semantics.

2.4 Classification in Genetic Programming

In this section, we present the work that uses GP for solving classification problems.

First, we list the work that does not use semantics in the evolutive process.

Loveard and Ciesielski [64] proposed five different techniques for representing clas-

sification problems in GP. (1) Binary decomposition, where a GP tree is generated for

each class, this is equivalent to the strategy one-vs-all. (2) Static range selection, as

most of the genetic programs return real values, they divided those values into differ-

ent intervals where each one represents one class. (3) Dynamic range selection, in this

case, instead of using static ranges, it is allowed for each individual to determine those

ranges dynamically. (4) Class Enumeration, they add a new node function that rep-
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resents the instruction IF with the goal of that each individual returns the class type,

which is a categorical value that indicates the class assigned to samples. Finally, (5)

Evidence Accumulation. This representation contains a vector with k entries, where k

represents the number of classes. Before program execution, the vector is initialized to

zero. As the program executes, values are added (or subtracted) from certain elements

of the vector. At the end, the element with the highest value in the vector is declared to

be the most certain outcome for classification. Based on their results, they found that

dynamic range selection is more appropriate for both binary and multi-class problems

as it is capable of producing classifiers of a higher accuracy degree. Muni et al. [69]

proposed to evolve a GP tree for each class following an equivalent strategy of one-vs-

all approach. For a two-class problem, a single tree T can represent a solution, and the

label assignation is defined in Equation 2.24. They extended it to a multi-category clas-

sification problem. In their design, a solution can be represented for k trees, one per

class, and the label assignation is described in Equation 2.25. Jaben and Baig [47] de-

veloped a two-stage method for constructing multi-class classifiers based on GP trees.

They used the principle one-vs-all. The first stage creates a classifiers population where

individuals are trained to discriminate between the absence and presence of a partic-

ular class amongst many classes. The second stage takes the individual discriminators

from the first stage and combines them in a single solution. This stage eliminates the

need for any conflict resolution mechanism that requires extra computation.

cl ass 1 i f T (x) ≥ 0, el se cl ass 2 (2.24)

cl ass i i f Ti (x) ≥ 0 and T j (x) < 0 ∀ j 6= i i , j ∈ {1,2, ...,k} (2.25)

Ingalalli, Silva, Castelli, and Vanneschi affirmed in [46] that GP was never re-

garded as a good method to perform multi-class classification. They also proposed

a GP framework called Multi-dimensional Multi-class Genetic Programming (M2GP).

The main idea is to transform the original space into another one using functions

evolved with GP, then, a centroid is calculated for each class, and the vectors are as-
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signed to the class that corresponds to the nearest centroid using the Mahalanobis

distance. M2GP takes as argument the dimension of the transformed space; this pa-

rameter is evolved in M3GP [70] by including specialized search operators that can

increase or decrease the number of feature dimensions produced by each tree. They

extended M3GP and proposed M4GP [60] that uses a stack-based representation in

addition to new selection methods, namely lexicase selection, and age-fitness Pareto

survival. They end their document with the following statement: “It may also be of in-

terest to explore whether or not variation operators with semantic guarantees can be

developed in this context”.

Naredo et al. [72] used Novelty Search for evolving genetic programming clas-

sifiers based on M3GP. They used semantics for computing the novelty of individuals.

To the best of our knowledge, they are the first that used novelty search and semantics

for evolving GP classifiers. Each GP individual is represented as a binary vector whose

length is the training set size, where every entry is set to 1 if the classifier assigns the

class label correctly and 0 otherwise. Then, they used those binary vectors to measure

the sparseness among individuals, and the more the sparseness, the higher the fitness

value. Their results show that all their NS variants achieve competitive results rela-

tive to the traditional objective-based. Galván-López et al. [28] also used semantics in

Multi-objective GP for solving unbalanced binary classification problems.

Auto machine learning consists of obtaining a model automatically, e.g., classi-

fier or regressor, that includes the steps of preprocessing, feature selection, classifier

selection, and hyperparameters tuning. Feurer et al. [23] developed a robust auto-

mated machine learning (AutoML) technique using Bayesian optimization methods.

It is based on scikit-learn [80], using 15 classifiers, 14 feature preprocessing methods,

and 4 data preprocessing techniques, giving rise to a structured hypothesis space with

110 hyperparameters. Olson et al. [76] proposed the use of GP to develop a robust algo-

rithm that automatically constructs and optimizes machine learning pipelines through

a Tree-based Pipeline Optimization Tool (TPOT). On classification, the objective con-
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sists of maximizing accuracy score performing a searching of the combinations of 14

preprocessors, 5 feature selectors, and 11 classifiers; all these techniques implemented

in scikit-learn [80].
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2.5 Summary

Recent proposed operators in Genetic Programming

Year Authors
Use of se-
mantics

Operator(s) name(s) Main idea Function set Application Main results

2008 -
2009

Beadle and John-
son [3, 4]

Indirect
Semantically driven
crossover and mutation
operators

The crossover is applied several times, and
the offspring that are semantically equiva-
lent to their parents are rejected. The mu-
tation allows the operation only if the in-
dividual is semantically different from its
parent.

IF, AND, OR,
NOT

Simple problems: bit
Multiplexer and even 5
parity

Increase performance of GP and
decrease code bloat

2009 -
2012

Quang Uy et al.
[83, 96]

Indirect
Semantic Similarity
based Crossover and
Mutation operators

The crossover combines individuals at a
subtree level trying that subtrees are se-
mantically different but no so much, which
means the subtrees need to be semanti-
cally similar. The mutation allows replac-
ing a subtree of the individual only if the
new subtree is semantically similar to the
one that is going to be replaced.

+, −, ∗, sin,
cos, exp,
and, log

Real-valued symbolic
regression. Unidimen-
sional functions taking
as reference 20 or 100
points.

The operators were better than
traditional standard GP crossover
and mutation operators

2012 Hara et al. [40] Indirect
Semantic Control
Crossover

It combines individuals at a subtree level
and performs a global search at the begin-
ning of the evolutive process and a local
search in the end.

+, −, ∗
A real-valued symbol
regression problem and
even 5 parity

The proposal got better per-
formance than conventional
crossover

2014 -
2015

Graff et al. [29,30,
92]

Indirect

Semantic crossover and
mutation operators based
on the Partial Derivative
Error

They propagate the partial derivative error
to know the optimal values in the crossover
or mutation points.

+, −, ∗, /
Symbolic regression
problems

Best performance than tradition-
ally GP systems

2004 -
2012

Moraglio et
al. [67, 68]

Direct
Geometric Semantic
Genetic Programming
(GSGP)

The crossover operator SX generates an off-
spring as r ·P1 + (1− r ) ·P2, where r ∈ [0,1].
The mutation operator is defined as P +
ms∗(R1−R2), where R1 and R2 are random
trees, and ms ∈ [0,1].

And, Or, Not
/ +, −, ∗ / if
then else

Boolean functions / Poly-
nomial regression / Clas-
sification

Advantages: Offspring fitness can-
not be worse than the worst fitness
of the parents. The problem is
converted into a convex one. Dis-
advantages: The offspring is al-
ways bigger than the sum of the
size of its parents. This makes the
use of this operator hard in prac-
tice.
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Recent proposed operators in Genetic Programming

Year Authors
Use of se-
mantics

Operator(s) name(s) Main idea Function set Application Main results

2009 -
2012

Krawiec et al. [51,
53]

Direct
Approximating geometric
crossover in semantic
space

The crossover operator tries to minimize d(P1,O)+
d(P2,O)+|d(P1,O)−d(P2,O)| to generate offspring
whose semantics are close to their parents’ se-
mantics, but also, they promoted equidistance be-
tween parents and offspring semantics. He defined
the geometric crossover operators as operators that
generate offspring with the following characteristic
||O,P1||+ ||O,P2|| = ||P1,P2||.

+, −, ∗, /
Symbolic regression
problems

Reduce the computa-
tional cost of SX

2012 -
2013

Krawiec and
Pawlak et
al. [54, 55, 58]

Direct
Locally geometric seman-
tic crossover (LGX)

It approximates the crossover operator of GSGP at a
subtree level. It uses a library of procedures.

+, −, ∗, /
Read-valued symbolic re-
gression

Get the same results of
RX but reducing the bloat
code

2013 -
2015

Krawiec, Pawlak,
and Wieloch [56,
79]

Direct

Approximating geometric
crossover by semantic
backpropagation (AGX)
and Random Desired
Operator (RDO)

It approximates the crossover operator of GSGP at a
subtree level. AGX calculates the point in the center
of the segment joining the parents semantics s(p1)

and s(p2) as m = s(p1)+s(p2)
2 . It uses backpropaga-

tion for propagating the expected semantics in the
crossover points, and it searches in a library of pro-
cedures the ones whose semantics are the closets
to the desired ones. RDO is a mutation operator
that propagates the target semantics until the mu-
tation point to calculate the desired semantics in
that node. Then, a procedure whose semantics is
the closests to the desired semantics is searched in
a procedure library.

+, −, ∗, /,
sin, cos, exp,
log

Read-valued symbolic re-
gression

AGX and RDO converges
faster than LGX and clas-
sic GPX for symbolic re-
gression benchmarks.

2015
Graff et al. [35,
37]

Direct
Crossover operators
based on projections in
the phenotype space

The first crossover operator creates a plane in the
semantic space using the parents’ semantics and
the origin of the space. The offspring is calculated
as the projection of the target in that plane. The sec-
ond operator uses a linear combination of k parents
as

∑
k αk Pk (x), with the idea of optimizing the coef-

ficients {αi } with ordinary least squares (OLS).

+, −, ∗, /,
sin, cos, exp,
log

Read-valued symbolic re-
gression

The offspring will be at
least as good as the best
parent.

2016 Nguyen et al. [74] Direct
Subtree Semantic Geo-
metric Crossover (SSGX)

It approximates the crossover operator of GSGP at
a subtree level. It searches in the parents’ trees the
subtrees whose semantics are the closets to the par-
ents’ semantics. Then, the offspring is generated
using an equation similar to the one proposed in
GSGP but with the subtrees.

+, −, ∗, /,
sin, cos, exp,
log

Read-valued symbolic re-
gression, 4 UCI regression
problems

SSGX reduces the code
growth of SX
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Recent proposed operators in Genetic Programming

Year Authors
Use of
seman-
tics

Operator(s) name(s) Main idea Function set Application Main results

2015 -
2019

Castelli et al. [9,
12]

Direct

Geometric Semantic
Genetic Program-
ming with Local
Search (GSGP-LS)

In this mutation operator, an individual P is modified with
the equation O = α0 +α1P +α2(R1 −R2) where R1 and R2
are random trees, and, αi ∈ R. {αi } are calculated using the
target semantics and OLS for getting the better linear com-
bination of the original and the random trees. In the exten-
sion of their work, they proposed to apply local search for
all the individuals during a separate step after mutation and
crossover. For a GP tree T , they calculated an optimized one
T ′ as T ′ =∑

j α j f j (T ), where f j :R→R, and the values of αi
are optimized with OLS minimizing the error between the
individual semantics and target semantics.

+, −, ∗, /
3 real life mul-
tivariable regres-
sion problems

GSGP-LS outperforms GSGP on
the training set, but overfits it. On
the test set GSGP is better than GP.
The hybrid proposal, integrating
GSGP and GSGP-LS, got excellent
results on the training and test set.

2016 Hara [39] Direct
Deterministic Ge-
ometric Semantic
Crossover

They calculated the parameter r of the GSGP crossover oper-

ator as r = |P1P2|−|P1T |cosθ
|P1P2| where θ = ∠T P1P2, and P1, P2

and T are the semantics of the parents and the target.

+, −, ∗
Real-valued
symbolic regres-
sion

The offspring is the projection of
the target in the line formed by the
parents to determine the optimal
combination. It improves the per-
formance of GSGP.

2016 Szubert et al. [95] Direct
Forward Propagation
Mutation (FPM)

It defines a structure of four new nodes for the individual.
FPM uses a combination of forward and back-propagation
to find a combination of unitary and binary functions that is
the most similar to the desired behavior.

+, −, ∗, /,
sin, cos, exp,
log

Real-valued
symbolic regres-
sion

FPM produced shorter programs
than RDO, also it obtained signif-
icantly lower error on the unseen
test dataset than RDO.

2019
Virgolin et
al. [101]

Direct Linear scaling of RDO
They introduced a scaled version of MSE incorporating the
scalar values a and b as follows MSE(y,o) = 1

n
∑

i (yi − (a +
boi ))2, where a and b are optimized.

+, −, ∗, /

Real-world
benchmark
regression prob-
lems

The incorporation of lin-
ear scaling within semantic
backpropagation-based GP leads
to much lower errors, and out-
performs the use of traditional
variation operators

2017 -
2019

Chen et al. [14–
16]

Direct
Angle-Driven Geo-
metric Semantic GP
(ADGSGP)

They defined the angle between the relative vectors of two

individuals’ semantics as γr = ar ccos

(
~t−~V1
||~t−~V1||

· ~t−~V2
||~t−~V2||

)
.

They proposed three techniques. (1) Angle-Driven Selec-
tion (ADS) selects a pair of parents that have good fitness
values as well as are distant to each other regarding the
angle-distance of their relative semantics. (2) Perpendicu-
lar Crossover (PC) generates a child point standing on the
line crossing the two parents, as GSGP, but in this case, its se-
mantics vector is perpendicular to the vector defined by the
two parents. (3) Random Segment Mutation (RSM) where
the offspring stands on the interval between the parent and
the target semantics.

+, −, ∗, /
Multivariable
symbolic regres-
sion

ADGSGP has a faster convergence
rate than traditionally GP and
GSGP, a good interpret ability, and
requires less computational effort.
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Fitness function
Year Authors Proposal name Main idea Main results

2011
Lehman and Ken-
neth [62]

Novelty Search (NS)
It presents an extreme case where the fitness function is replaced by individuals’ novelty. The
novelty of the individual P is calculated as the average of the distances between P and its k-
nearest neighbors in the semantic space.

It promotes population diversity
and gets diverse solutions.

2012 Nguyen et al. [73] Fitness Sharing
Their proposal consisted of calculating the individual fitness as f ′i = fi (mi + 1), where mi is
approximately equal to the number of individuals that behave similarly to the individual i .

It promotes the dispersion and di-
versity of individuals

2014 -
2019

Ruberto et al. [13, 85,
98]

Nested alignment ge-
netic programming
(NAGP)

They defined the error space where each individual can be represented as the vector ~ep = P −
t , where P represents the individual semantics and t the target semantics. In this space, the
target vector t is the origin. Also, they defined two properties: Optimally Aligned Individuals
and Optimally Coplanar Individuals. Those properties said that if two or three individuals are
founded whose error vectors accomplish those properties, then the problem is solved. Later,
they proposed two GP systems where the fitness function is changed with the aim of searching
individuals that satisfy those properties. In 2019, they presented the first usable alignment-
based genetic programming system, called Nested alignment genetic programming (NAGP).

NAGP outperforms GSGP and
GSGP-LS on four complex real-
life applications. Its models are
not only more effective but also
significantly smaller.
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New schemes for parent selection
Year Authors Proposal name Main idea Application Main results

2013
Galvan-
Lopez et
al. [27]

Using semantics in
the selection mecha-
nism in GP

They applied crossover only to those individuals whose differ-
ence in behavior is greater than a defined threshold for every el-
ement of the training set.

Artificial Ant Prob-
lem, Even-n Parity
problem, and Real-
Valued Symbolic
Regression problems.

The semantics in selection approach has shown
promising results, in many cases achieving superior
results compared to the crossover-semantics based
approach.

2016 -
2018

Chu et
al. [17, 18]

Semantic tourna-
ment selection for
GP based on statisti-
cal analysis of error
vectors

They used the Wilcoxon signed-rank test for comparing whether
individuals are statistically different or not. If they are statisti-
cally different, they select the one with the best fitness as a par-
ent. Otherwise, they choose the smaller one.

GP benchmark prob-
lems and UCI reposi-
tory regression prob-
lems.

The proposed techniques were better than standard
tournament selection and neatGP (the state of the
art method for controlling GP code bloat) in im-
proving GP generalisation and reducing GP code
growth.

2016
Hara et
al. [38]

Deterministic Ge-
ometric Semantic
Genetic Program-
ming with Optimal
Mate Selection

They proposed a selection scheme for choosing parents in such
a way that the line connecting them is closed to the target in the
semantic space.

Real-valued symbolic
regression.

The proposed selection scheme can improve search
performance of deterministic GSGP by using the ap-
propriate application rate.

2017 -
2019

Chen et al.
[14–16]

Angle-Driven Selec-
tion (ADS)

They proposed a selection scheme to choose a pair of parents
that have good fitness values as well as are distant to each other
regarding the angle-distance of their relative semantics.

Multivariable sym-
bolic regression

In general, ADGSGP has a faster convergence rate
than traditionally GP and GSGP, a good interpret
ability, and requires less computational effort.

2019
Vanneschi et
al. [98]

Nested alignment ge-
netic programming
(NAGP)

They proposed a selection scheme based on five selection crite-
ria, which had been organized into a nested tournament. The
objectives were: (1) promote diversity; (2) maximize the value of
the k constant, explained in Section 2.3; (3) minimize the sum of
the errors; (4) minimize the angle between the error vectors; and,
(5) reduce the error of the reconstructed expression.

UCI regression prob-
lems

NAGP outperforms GSGP and GSGP-LS on four
complex real-life applications. Its models are not
only more effective but also significantly smaller.
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Genetic Programming classifiers

Year Authors
Use of se-
mantics

Proposal name Main idea Main results

2001
Loveard and Ciesiel-
ski [64]

No
Representing classifica-
tion problems in Genetic
Programming

They proposed five different techniques for representing classifica-
tion problems in GP. (1) Binary decomposition, (2) Static range se-
lection, (3) Dynamic range selection, (4) Class Enumeration, and (5)
Evidence Accumulation. Dynamic range selection scheme dynami-
cally divided those values into different intervals where each one rep-
resents one class.

Dynamic range selection is more appropri-
ate for both binary and mullti-class prob-
lems as it is capable of producing classifiers
of a higher degree of accuracy when com-
parable training times are allowed.

2004 Muni et al. [69] No
A Novel Approach to De-
sign Classifiers using Ge-
netic Programming

They proposed to evolve a GP tree for each class following an equiva-
lent strategy of one-vs-all approach.

They proposed a comprehensive scheme
for classifier design for multicategory prob-
lems using a multitree concept of GP, more-
over suitable crossover and mutation oper-
atos.

2013 Jaben and Baig [47] No

Two-stage learning for
multi-class classification
using Genetic Program-
ming

They developed a two-stage method for constructing multi-class
classifiers based on GP trees. The first stage creates a population of
GP classifiers for particular classes, one-vs-all. The second one com-
bines those classifiers to create a multi-class classifier.

The two-stage learning scheme has
yielded better results when compared
to one-versus-all or binary decomposition
method.

2016 Naredo et al. [72] Yes
Evolving Genetic Pro-
gramming classifiers with
novelty search

Their proposal is based on M3GP, but in this case, novelty search (NS)
and semantics are used instead of fitness for guiding the evolutive
process.

In terms of performance, results show that
all NS variants achieve competitive results
relative to the standard approach in GP.
Moreover, NS variants got smaller program
trees.

2014 -
2019

Ingalalli, Castelli,
Muñoz, Silva, Trujillo,
La Cava, Vanneschi
et al. [46, 60, 70]

No M2GP, M3GP and M4GP

They proposed several Multi-dimensional Multi-class Genetic Pro-
gramming algorithms where the main idea is to transform the orig-
inal space into another one using functions evolved with GP, then, a
centroid is calculated for each class, and the vectors are assigned to
the class that corresponds to the nearest centroid using the Maha-
lanobis distance.

M4GP produces better results that classical
classifiers as LR, RF, MLP, KNN and RF but
it is not better than TPOT.
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Chapter 3

Selection Heuristics



3 Selection Heuristics

In this chapter, we describe in detail the main contribution of this thesis: the parent se-

lection heuristics that are inspired in function properties and use semantics for guiding

the selection process. We used EvoDAG, which was described in Section 1.4, for testing

all the selection schemes.

Section 3.1 describes the motivation of our heuristics. It is followed by Section

3.2 that describes the schemes for parent selection. It starts with the description of the

classical technique for parent selection in GP: tournament selection based on fitness,

and how it is implemented in EvoDAG (Subsection 3.2.1). Random selection is de-

scribed in Subsection 3.2.2. Subsections 3.2.3 and 3.2.4 describe our selection heuris-

tics: (1) Tournament selection based on cosine similarity (sim), (2) Tournament selection

based on Pearson’s correlation coefficient (prs) and (3) Tournament selection based on

the accuracy (acc). Finally, Section 3.3 presents the techniques for negative selection

that are negative tournament selection based on fitness and random negative selec-

tion.

3.1 Motivation

This thesis proposes new selection heuristics for GP tailored to classification problems

based on the idea that function properties and individual semantics can guide parent

selection.

Let us recall that in a steady-state evolution, which is used in EvoDAG, there are

two stages where selection takes place, on the one hand, the selection is used to choose

the parents, and on the other hand, the selection is applied to decide which individual,

in the current population, is replaced by the offspring. This last one is called negative

selection. The most popular parent selection method in GP is tournament selection
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based on fitness [22] (see Subsection 3.2.1), and also, negative selection is commonly

performed using the same selection scheme (see Subsection 3.3.1).

Nonetheless, as we reviewed in Chapter 2, there have been approaches that in-

vestigate the behavior of EAs when the fitness function is replaced or combine with

other techniques in the task of parent selection. The extreme case would be to replace

the fitness function, in all the evolutionary process, as done in Novelty Search [62]

where the fitness of an individual is related to its novelty. The novelty of an individ-

ual is computed as the average of the distances between it and its k-nearest neighbors.

GP with Novelty Search has been used in classification problems (see [72]) where the

novelty is computed with the 0-1 loss function, i.e., it counts the differences between

the behavior of any pair of individuals. Novelty Search has probed that it can be useful

in the evolutionary process, and further, to evolve classifiers. However, random selec-

tion has not been evaluated, and it is the less expensive of any selection schemes. So,

we include in this dissertation the comparison of random selection for parent selection

and negative selection.

Moreover, some selection schemes that use semantics have been proposed for

improving GP performance. They are described in detail in Section 2.3. The most

significant for us are Nested alignment genetic programming (NAGP) [98] and Angle-

Driven Selection (ADS) [14–16]. In NAGP, the objective is to minimize the angle be-

tween the error vectors of programs in multi-individuals, and the authors proposed

a selection scheme based on five selection criteria, which had been organized into a

nested tournament. The objectives were: (1) promote diversity; (2) maximize the value

of the constant k in Equation 2.23; (3) minimize the sum of the errors; (4) minimize the

angle between the error vectors; and, (5) reduce the error of the reconstructed expres-

sion. On the other hand, the aim of ADS is selecting a pair of parents that have good

fitness values as well as are distant to each other regarding the angle-distance of their

relative semantics. Those approaches are interesting because they used semantics to

guide parent selection. However, to the best of our knowledge, no one has proposed
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selection schemes based on functions’ properties. Our primary motivation is that the

selection scheme used for one function cannot be useful in another one. For example,

the parent selection scheme used in the function
∑

cannot perform as well as for the

function min. For that reason, we proposed new selection schemes based on functions’

properties and individual semantics.

3.2 Parent Selection

In the case of EvoDAG, for the creation of an offspring, a function f is randomly se-

lected from the function set F , and then parent selection needs to be performed to

choose each one of the k arguments (or parents). For example, Figure 3.1 shows an ex-

ample of parent selection where the function
∑

was selected, and, 3 individuals from

the population P need to be selected as arguments for creating the new offspring. This

thesis compares different schemes for parent selection; in other words, how the argu-

ments of functions need to be chosen. Parent selection is generally applied by tourna-

ment selection based on fitness [22] (see Subsection 3.2.1). The original implementa-

tion of EvoDAG uses that scheme.

Figure 3.1: Diagram of parent selection in EvoDAG. Source: Own elaboration.

67



This section presents the classical parent selection scheme, tournament selec-

tion based on fitness (Subsection 3.2.1); random selection (Subsection 3.2.2) and our

proposed parent selection heuristics based on: cosine similarity (Subsection 3.2.3),

Pearson’s correlation coefficient (Subsection 3.2.3) and accuracy (Subsection 3.2.4).

3.2.1 Parent Selection based on Fitness (fit)

Parent Selection based on Fitness

It tries to select fitted individuals as arguments. Each argument is independently

chosen using tournament selection based on fitness.

In GP, as well as in EvoDAG, the classical parent selection scheme is tournament

selection based on fitness. This tournament randomly selects several individuals from

the population and chooses as the parent the fittest one. Specifically, in EvoDAG, each

one of the k arguments (or parents) are independently selected from the population P

using a tournament selection based on fitness. Figure 3.2 shows a simple example of

parent selection in EvoDAG. In this case, an offspring is created with the function
∑

.

Three parents need to be chosen from the population P for becoming arguments. For

each one of the arguments, two individuals and randomly selected from the popula-

tion and the fittest one is chosen as parent. In this case, the number of individuals in

the tournament t s is two. Algorithm 3 describes the selection of arguments in EvoDAG

based on fitness.

3.2.2 Random Selection of Parents (rnd)

Random Selection of Parents

It randomly selects the individuals.

The most straightforward and less expensive strategy for selecting parents, or in

this case, arguments, is random. The proposal of Novelty Search [62] produces good re-
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Figure 3.2: Diagram of parent selection based on fitness (in EvoDAG). Source: Own
elaboration.

sults, in that case, individuals’ novelty replaces the fitness function. It makes us wonder

what happens if parent selection is performed randomly. For that reason, we include in

the comparison random selection. In this case, the process consists of selecting all the

arguments of functions randomly from the population P . Figure 3.3 shows a simple

example of random parent selection in EvoDAG. In this case, function
∑

is selected and

it needs three arguments. But, as we said, they are randomly selected from the popu-

lation. Algorithm 4 describes random selection of parents for selecting the arguments

of functions in EvoDAG.

69



Algorithm 3: Selection of arguments based on fitness (fit) in EvoDAG

Input: k, the number of arguments
Input: t s, the tournament size
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
for i from 1 to k do

A ← an individual randomly selected from the population P ;
f i tnessA ← fitness of A;
for j from 2 to t s do

B ← an individual randomly selected from the population P ;
f i tnessB ← fitness of B ;
if f i tnessB > f i tnessA then

A ← B ;
f i tnessA ← f i tnessB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;

Algorithm 4: Random selection of arguments (rnd) in EvoDAG

Input: k, the number of arguments
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
for i from 1 to k do

A ← an individual randomly selected from the population P ;
Add the individual A to ar g s;

end
Return ar g s;
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Figure 3.3: Diagram of random selection of parents (in EvoDAG). Source: Own elabo-
ration.

3.2.3 Parent Selection based on Cosine Similarity (sim) and Pearson’s

Correlation Coefficient (prs)

Parent Selection based on Cosine Similarity

It consists of selecting individuals whose semantics’ vectors ideally have rectan-

gle angles. The absolute cosine similarity is used to measure the angle between

individuals’ semantics. This heuristic is designed based on the properties of the

function
∑

and the classifiers Naive Bayes (NB and MN) and Nearest Centroid

(NC).

si m(~v1, ~v2) = |~v1 · ~v2|
‖~v1‖‖~v2‖
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Parent Selection based on Pearson’s Correlation Coefficient

It aims to select parents whose semantics vectors are uncorrelated among them.

We use the absolute Pearson’s correlation coefficient for measuring the corre-

lation among inputs. This heuristic is designed based on the properties of the

function
∑

and the classifiers Naive Bayes (NB and MN) and Nearest Centroid

(NC).

pr s(v1, v2) = |(v1 − v̄1) · (v2 − v̄2)|
‖v1 − v̄1‖‖v2 − v̄2‖

As we said at the beginning of this chapter, the main idea of our heuristics is to

be inspired by functions’ properties and use semantics for guiding the parent selection.

The first heuristics, based on cosine similarity and Pearson’s correlation coefficient, are

related to the relationship of individuals’ semantics in the semantic space.

On one hand, we consider the function
∑

that in EvoDAG is defined as
∑

k θk pk .

It can be seen as a linear combination of individuals. It is well known that a set of lin-

early independent vectors generates a base for a specific space. Then, we can enhance

the performance of the function
∑

if its arguments are linearly independents among

them.

On the other hand, we consider the classifiers Naive Bayes and Nearest Cen-

troid. Naive Bayes is based on Bayes’s theorem with the “naive” assumption of inde-

pendence between every pair of variables; this is, it assumes that its inputs are uncor-

related. Then, if Naive Bayes receives uncorrelated variables, it will work better. The

Nearest Centroid classifier works as follows: it calculates the centroids of all classes,

then, for predicting a new sample, the assigned label will be the class that corresponds

to the nearest centroid. It is common to use Euclidean distance that is defined as

d(~v1, ~v2) =
√∑

i (v1i − v2i )2. It can be seen that it calculates the distance using each

variable independently. For that reason, we assume that the performance of Nearest

Centroid could increase if it receives uncorrelated inputs, as well as Naive Bayes. Fig-

72



ure 3.4 shows an example of the Nearest Centroid performance with uncorrelated and

correlated variables. It can be seen that at least in that example, Nearest Centroid per-

forms better using uncorrelated variables. Based on that, for both classifiers, we tried

to select parents whose semantics are uncorrelated.

Figure 3.4: Example of Nearest Centroid classifier with uncorrelated and correlated
variables. a) and c) Classes and their centroids. b) and d) Predicted classes using the
classes centroids and the algorithm Nearest Centroid. Source: Own elaboration.

Brereton reviewed and compared the properties: orthogonality, uncorrelated-

ness, and linear independence of vectors in [7]. He affirmed that these concepts are

commonly confused because they are related.

Some vectors are linearly independent among them if they accomplish the fol-

lowing rules. (1) If the number of entries and vectors are the same, they are linearly

independent if the vectors are placed together in a matrix X and its determinant is

nonzero. (2) If the number of vectors is less than the number of entries, they are lin-

early independent if the vectors are placed together in a matrix X , and the determinant

of X ′X is nonzero [7].
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Two vectors are orthogonal if the angle between them is equal to 90◦ or π
2 rad [7].

Cosine similarity measures the cosine of the angle between two vectors in the space. It

only uses the direction of vectors without taking into account the magnitude. Its value

ranges between -1 and 1. It is 1 if the vectors have exactly the same direction, -1 if their

direction is exactly opposite, and 0 if they are orthogonal, as it can be seen in Figure 3.5.

The cosine similarity between the vectors ~v1 and ~v2 is defined as Equation 3.1, where ·
represents the dot product and ‖~v‖ the norm of ~v .

C S(~v1, ~v2) = cos(θ) = ~v1 · ~v2

‖~v1‖‖~v2‖
(3.1)

a) C S(~v1, ~v2) = 0.18 b) C S(~v1, ~v3) = 0.0.97 c) C S(~v1, ~v4) =−0.95

Figure 3.5: Example of Cosine Similarity (CS), ~v1 = [3,6], ~v2 = [−4,3], ~v3 = [2,9], and
~v4 = [−4,−4]. a) Cosine similarity of ~v1 and ~v2, b) Cosine similarity of ~v1 and ~v3, and c)
Cosine similarity of ~v1 and ~v4. Source: Own elaboration.

Pearson’s correlation coefficient has been widely used for measuring the correla-

tion among variables. The Pearson’s coefficient between the input variables, v1 and v2,

is defined as Equation 3.2, where cov is the covariance and σ represents the standard

deviation of variables. When, Person’s coefficient is calculated using a sample, it can be

rewritten as Equation 3.3, where v1 and v2 are vectors with the values of the variables, ·
represents the dot product and ‖~v‖ the norm of~v . It is essential to notice that, if we had

centered data, the equation would be the same as cosine similarity. Pearson’s correla-

tion coefficient value ranges between -1 and 1. It is 1 if the variables are total positive

correlated, 0 represents no linear correlation among variables, and -1 represents a total

negative linear correlation.

ρv1,v2 =
cov(v1, v2)

σv1σv2

(3.2)
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ρv1,v2 =
(v1 − v̄1) · (v2 − v̄2)

‖v1 − v̄1‖‖v2 − v̄2‖
(3.3)

Besides, Brereton affirmed that uncorrelated and orthogonal vectors are lin-

early independent, as can be seen in the Venn diagram of Figure 3.6.

Figure 3.6: Diagram of the relationship between linearly independent, uncorrelated,
and orthogonal vectors. Source: Own elaboration.

To sum up, we want linearly independent vectors as arguments for the function∑
and uncorrelated inputs for the classifiers Naive Bayes and Nearest Centroid. Also,

as we said, cosine similarity and Pearson’s correlation coefficient, which are related,

have been used for measuring the angle between vectors and the correlation of vec-

tors, respectively. We decided to create two parent selection heuristics based on these

properties. Our first heuristic consists of selecting individuals whose absolute cosine

similarity between their semantics vectors is as close as possible to zero. For that rea-

son, we use the absolute of the cosine distance (see Equation 3.4). The second one, the

selection heuristic based on Pearson’s correlation coefficient, tries to select as parents

individuals whose semantics are uncorrelated. Moreover, the direction of uncorrelat-

edness does not affect, then, we use the absolute of Pearson’s coefficient (see Equation

3.5).
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si m(~v1, ~v2) = |~v1 · ~v2|
‖~v1‖‖~v2‖

(3.4)

pr s(v1, v2) = |(v1 − v̄1) · (v2 − v̄2)|
‖v1 − v̄1‖‖v2 − v̄2‖

(3.5)

The selection of arguments based on the absolute of cosine similarity is de-

scribed using a simple example showed in Figure 3.7. In this case, the function
∑

is

selected for creating the offspring and it needs three arguments. The first parent is ran-

domly selected from the population P . Then, the next arguments are independently

selected. For each one, a tournament is performed, which is described as follows. First,

two individuals are randomly selected from the population P , and the absolute cosine

similarity between their semantics and the first argument semantics is calculated. The

individual with the minimum value of the absolute cosine similarity between its se-

mantics and the first parent semantics is selected as argument. Algorithm 5 describes

the selection of arguments based on cosine similarity in EvoDAG. It is important to

mention that, as we affirmed in Section 1.4, the individuals’ semantics in EvoDAG when

solving classification problems is an array of semantics vectors, then, the cosine sim-

ilarity between individuals’ semantics is calculated as the sum of similarities among

pair of vectors. This process is described in the algorithm.

The selection of arguments based on Pearson’s correlation coefficient is de-

scribed using a simple example showed in Figure 3.8. In this case, the function
∑

is

selected for creating the offspring and it needs three arguments. The first parent is ran-

domly selected from the population P . Then, the next arguments are independently

selected. For each one, a tournament is performed, which is described as follows. First,

two individuals are randomly selected from the population P , and the absolute Pear-

son’s correlation coefficient between their semantics and the first argument semantics

is calculated. The individual with the minimum value of the absolute Pearson’s cor-

relation coefficient between its semantics and the first parent semantics is selected as

argument. Algorithm 6 describes the selection of arguments based on Pearson’s corre-
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Algorithm 5: Selection of arguments based on the absolute of cosine
similarity in EvoDAG

Input: k, the number of arguments
Input: t s, the tournament size
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
F ← an individual randomly selected from the population P ;
semanti csF ← the array of individual F ’s semantics vectors;
for i from 2 to k do

A ← an individual randomly selected from the population P ;
semanti csA ← the array of individual A’s semantics vectors;
si mA ← 0;
for each element in semanti csF and semanti csA do

si mA ← si mA +
∣∣∣( ~semanti csF i )·( ~semanti csAi )

∣∣∣∥∥∥ ~semanti csF i

∥∥∥∥∥∥ ~semanti csAi

∥∥∥ ;

end
for j from 2 to t s do

B ← an individual randomly selected from the population P ;
semanti csB ← the array of individual B ’s semantics vectors;
si mB ← 0;
for each element in semanti csF and semanti csB do

si mB ← si mB +
∣∣∣( ~semanti csF i )·( ~semanti csBi )

∣∣∣∥∥∥ ~semanti csF i

∥∥∥∥∥∥ ~semanti csBi

∥∥∥ ;

end
if si mB < si mA then

A ← B ;
si mA ← si mB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;
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Figure 3.7: Diagram of parent selection based on cosine similarity (in EvoDAG). Source:
Own elaboration.

lation coefficient in EvoDAG. It is important to mention that, as we affirmed in Section

1.4, the individuals’ semantics in EvoDAG when solving classification problems is an

array of semantics vectors, then, the Pearson’s correlation coefficient between individ-

uals’ semantics is calculated as the sum of correlations among pairs of vectors. This

process is described in the algorithm.
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Algorithm 6: Selection of arguments based on Pearson’s correlation co-
efficient in EvoDAG

Input: k, the number of arguments
Input: t s, the tournament size
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
F ← an individual randomly selected from the population P ;
semani csF ← the array of individual F ’s semantics vectors;
for i from 2 to k do

A ← an individual randomly selected from the population P ;
semani csA ← the array of individual A’s semantics vectors;
pr sA ← 0;
for each element in sF and semani csA do

pr sA ← pr sA + |(semani csF i− ¯semani csF i )·(semani csAi− ¯semani csAi )|
‖semani csF i− ¯semani csF i‖‖semani csAi− ¯semani csAi‖ ;

end
for j from 2 to t s do

B ← an individual randomly selected from the population P ;
semani csB ← the array of individual B ’s semantics vectors;
pr sB ← 0;
for each element in sF and semani csB do

pr sB ← pr sB + |(semani csF i− ¯semani csF i )·(semani csBi− ¯semani csBi )|
‖semani csF i− ¯semani csF i‖‖semani csBi− ¯semani csBi‖ ;

end
if pr sB < pr sA then

A ← B ;
pr sA ← pr sB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;

79



Figure 3.8: Diagram of parent selection based on Pearson’s coefficient (in EvoDAG).
Source: Own elaboration.

3.2.4 Parent Selection based on the Accuracy (acc)

Parent Selection based on Accuracy

It consists of selecting parents minimizing the accuracy among them. The idea

is to select parents with different behaviors. This heuristic is designed based on

the properties of the function
∑

and the classifiers Naive Bayes (NB and MN) and

Nearest Centroid (NC).

acc(~P1, ~P2) = 1

n

∑
i
δ(P1i == P2i )

As we explained in Section 1.4, each EvoDAG individual contains an array of se-

mantics vectors, one per class, where each vector contains the semantics for a specific

class. A value close to 1 in the i -th entry of the j -th semantic vector represents that

the i -th input vector belongs to the class j . Opposite, a value of -1 represents that the

input vector do not belongs to that class. Further, for each input vector, the assigned
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class corresponds to the one with the highest value in the semantics vectors. There-

fore, another way for representing the individuals’ semantics is by using a vector with

the assigned labels to the input-vectors. We call this vector labels vector.

On the other hand, accuracy is widely used for calculating the performance of

classifiers. It counts the number of correct prediction between the target and the clas-

sifier. If ŷi and yi are the predicted and the real value of the i -th sample, the accuracy

over n input vectors is defined as accur ac y(y, ŷ) = 1
n

∑
i δ(ŷi == yi ), where n is the

number of samples, and δ(.) returns 1 if its input is true and 0 otherwise.

Our selection heuristic based on accuracy aims to select parents whose seman-

tics are different, and this can be measured using as metric the accuracy among indi-

viduals’ labels vectors. Let be v1 and v2 the labels vectors of two individuals, the accu-

racy among them is defined as Equation 3.6, where n is the number of input vectors,

and δ(.) returns 1 if its input is true and 0 otherwise.

acc(v1, v2) = 1

n

∑
i
δ(v1i == v2i ) (3.6)

In Subsection 3.2.3, we described that Naive Bayes and Nearest Centroid work

better with independent variables, if we use the accuracy between the labels vectors of

two individuals, we can say that two individuals’ semantics are correlated among them

if their accuracy is equals to 1. In addition, the smaller the value, the less the correlation

among individuals’ semantics. On the other hand, for the sum function, if two identi-

cal or similar individuals are combined, the resultant one will be almost the same as its

parents. The objective of this heuristic is to select individuals whose accuracy among

their labels vectors is the smallest.

The selection of arguments based on accuracy is described with a simple ex-

ample showed in Figure 3.9. In this case, the function
∑

is selected for creating the

offspring and it needs three arguments. The first parent is randomly selected from the
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population P . Then, the next arguments are independently selected. For each one, a

tournament is performed, which is described as follows. First, two individuals are ran-

domly selected from the population P , and the accuracy between their labels vectors

and the first argument labels vector is calculated. The individual with the minimum

accuracy between its labels vector and the first parent labels vector is selected as argu-

ment. Algorithm 7 describes the selection of arguments based on accuracy in EvoDAG.

Figure 3.9: Diagram of parent selection based on accuracy (in EvoDAG). Source: Own
elaboration.

3.3 Negative Selection

Negative selection takes place when the new individual, the offspring, needs to be in-

serted in the population. In this case, an individual is selected to be replaced by the

new one. The classical negative selection scheme consists of choosing a non-fitted in-

dividual. In GP, generally, a tournament selection where the worst individual is selected

for being replaced is used for this purpose. Besides, we compare this technique with

random selection, because it is the most straightforward and less expensive strategy.
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Algorithm 7: Selection of arguments based on the accuracy in EvoDAG

Input: k, the number of arguments
Input: t s, the tournament size
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
F ← an individual randomly selected from the population P ;
l abel sF ← the labels vector of individual F ;
for i from 2 to k do

A ← an individual randomly selected from the population P ;
l abel sA ← the labels vector of individual A;
accA ← 1

n

∑
j δ(l abel sF j == l abel sA j ) ;

for j from 2 to t s do
B ← an individual randomly selected from the population P ;
l abel sB ← the labels vector of individual B ;
accB ← 1

n

∑
j δ(l abel sF j == l abel sB j ) ;

if accB < accA then
A ← B ;
accA ← accB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;
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This section is divided into two subsections. The first one describes the negative selec-

tion based on fitness, and the second one, random negative selection.

3.3.1 Negative Selection based on Fitness (fit)

Negative Selection based on Fitness

It tries to remove non-fitted individuals from the population. Those are replaced

by the new offspring.

The objective of negative selection based on fitness is to remove non-fitted in-

dividuals from the population P with the idea of improving the quality of individuals

generation by generation. EvoDAG performs this scheme using negative tournament

selection. t s individuals are randomly chosen from the population P , and the worst

of them, based on fitness, is the one which is removed from the population P and the

new offspring takes its place. Algorithm 8 shows this selection scheme.

Algorithm 8: Negative selection of individuals based on fitness

Input: t s, the tournament size
Output: The individual that will be removed from the population P

A ← an individual randomly selected from the population P ;
f i tnessA ← fitness of A;
for i from 2 to t s do

B ← an individual randomly selected from the population P ;
f i tnessB ← fitness of B ;
if f i tnessB < f i tnessA then

A ← B ;
f i tnessA ← f i tnessB ;

end
end
Return A;
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3.3.2 Random Negative Selection (rnd)

Random Negative Selection

It randomly removes individuals from the population. Those are replaced by the

new offspring.

Random negative selection aims to perform negative selection randomly be-

cause it is the most straightforward. Besides, as in random parent selection, we want to

see what happens if the negative selection is performed randomly. Algorithm 9 shows

this selection scheme. It can be seen that random negative selection is much simpler

than negative selection based on fitness.

Algorithm 9: Random negative selection

Output: The individual that will be removed from the population P

A ← an individual randomly selected from the population P ;
Return A;

3.4 Summary

This chapter presented the main contribution of this dissertation: the proposed se-

lection heuristics and their motivation. We divided the selection schemes into two

groups: parent selection and negative selection. In GP, parent selection consists of

selecting the parents of the new offspring. In EvoDAG, it can be seen as the selection

of the arguments for a function. Negative selection is when an individual needs to be

chosen for being removed from the population, and the new offspring takes its place.

For both selection steps, the classical selection scheme is based on fitness, where the

best (for parent selection) and the worst (for negative selection) individual is selected

from a group of individuals randomly chosen from the population.

For guiding parent selection, we proposed the following selection heuristics

that use functions’ properties, in addition to individuals’ semantics. The heuristics
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were designed for solving classification problems.

• Parent selection based on cosine similarity (sim) that consists of selecting individ-

uals whose semantics’ vectors ideally have rectangle angles. The absolute cosine

similarity was used to measure the angle between individuals’ semantics. This

heuristic was designed based on the properties of the function
∑

and the classi-

fiers Naive Bayes (NB and MN) and Nearest Centroid (NC).

• Parent selection based on Pearson’s correlation coefficient (prs) that aims to select

parents whose semantics vectors are uncorrelated among them. We used the

absolute Pearson’s correlation coefficient for measuring the correlation among

inputs. This heuristic was designed based on the properties of the function
∑

and the classifiers Naive Bayes (NB and MN) and Nearest Centroid (NC).

• Parent selection based on the accuracy (acc) that consists of selecting parents with

the objective of minimizing the accuracy among their labels vectors. The labels

vector of an individual is the vector whose entries correspond to the labels that

the individual assigns to all the input vectors. The idea is to select parents with

different behaviors. This heuristic was designed based on the properties of the

function
∑

and the classifiers Naive Bayes (NB and MN) and Nearest Centroid

(NC).

Besides, we proposed to test the use of random selection in both stages: parent

selection and negative selection.
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Chapter 4

Experiments and Results



4 Experiments and Results

In this chapter, we use thirty classification datasets taken from the UCI repository for

testing the performance of our proposed selection heuristics. They are described in

Section 4.1. The datasets were selected to be heterogeneous in terms of the number of

samples, variables, and classes. Two measures are used for analyzing the performance

of classifiers: macro-F1 and time (in seconds) per sample. They are described in detail

in Section 4.3.

In Section 4.4, we show and compare the performance of EvoDAG with different

selection techniques. For parent selection, we analyze the results of the proposed se-

lection heuristics against random selection or tournament based on fitness, the most

used technique. Those parent selection schemes were combined with random neg-

ative selection or negative selection based on fitness. The performance of different

parent and negative selection combinations was analyzed in terms of macro-F1 and

time. As we mentioned in the previous chapter, our heuristics were designed to be

used in the function
∑

and the classifiers Naive Bayes (NB and MN) and Nearest Cen-

troid (NC), then, we analyze what happens if our heuristics were used in all functions

that need more than one argument (
∑

,
∏

, max, min, hypot, NB, MN, and NC). Besides,

we show the results of the different selection schemes taking into account the proper-

ties of the datasets: class imbalance, number of variables, and number of samples.

We also compare our heuristics against state-of-the-art selection schemes. In

Chapter 2, we said that Angle-Driven-Selection (ADS) [15] and Novelty Search (NVS)

[62] had been recently proposed as new selection schemes. For that reason, we decided

to implement those techniques in EvoDAG for comparing our heuristics with them. In

Section 4.5, first, we explain the main idea of those schemes and how they were imple-

mented in EvoDAG. Finally, we present the results of the comparison of ADS and NVS

against our results in terms of macro-F1 and time.
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Besides, in Section 4.6, we present a comparison of EvoDAG plus our heuristics

against different state-of-the-art classifiers. We decided to compare EvoDAG against

sixteen classifiers of the scikit-learn python library [80]. Specifically, these classifiers

are Perceptron, MLPClassifier, BernoulliNB, GaussianNB, KNeighborsClassifier, Near-

estCentroid, LogisticRegression, LinearSVC, SVC, SGDClassifier, PassiveAggressiveClas-

sifier, DecisionTreeClassifier, ExtraTreesClassifier, RandomForestClassifier, AdaBoost-

Classifier and GradientBoostingClassifier. It is also included in the comparison two

auto-machine learning libraries: autosklearn [23] and TPOT [76].

In all cases, we employ the Wilcoxon statistical test for validating our results.

Finally, we use our visualization technique, Liking Product Landscape [87], for

analyzing the macro-F1 results of selection schemes and classifiers. The idea is to per-

form a comparison based on datasets and classification techniques.

4.1 Datasets

The classification problems used as benchmarks are thirty datasets taken from the UCI

repository [20]. Table 4.1 shows the datasets’ information. It can be seen that the

datasets are heterogeneous in terms of the number of samples, variables, and classes.

Additionally, some of the classification problems are balanced, and others are imbal-

anced.

We use Shannon’s entropy to indicate the degree of the class-imbalance in the

problem. It is defined as H(X ) = −∑
i pi log(pi ), where pi represents the probability

of the category i . We calculate those probabilities by counting the frequencies of each

category. Besides, for normalizing, we use the logarithm base the number of categories.

For example, if the classification problem has four categories, we calculate the Shan-
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Table 4.1: Datasets used to compare the performance of the algorithms. These prob-
lems are taken from the UCI repository. The table includes Shannon’s entropy to indi-
cate the degree of the class-imbalance, where the value 1.0 indicates that the samples
are perfectly balanced. In opposite, the smaller the value, the bigger the imbalance.

Dataset Train Test Variables Classes Classes
samples samples entropy

ad 2295 984 1557 2 0.58
adult 32561 16281 14 2 0.8
agaricus-lepiota 5686 2438 22 7 0.81
aps-failure 60000 16000 170 2 0.12
banknote 960 412 4 2 0.99
bank 31647 13564 16 2 0.52
biodeg 738 317 41 2 0.91
car 1209 519 6 4 0.6
census-income 199523 99762 41 2 0.34
cmc 1031 442 9 3 0.98
dota2 92650 10294 116 2 1.0
drug-consumption 1319 566 30 7 0.44
fertility 69 30 9 2 0.43
IndianLiverPatient 407 175 10 2 0.85
iris 105 45 4 3 1.0
krkopt 19639 8417 6 18 0.84
letter-recognition 14000 6000 16 26 1.0
magic04 13314 5706 10 2 0.93
ml-prove 4588 1530 56 2 0.98
musk1 333 143 166 2 0.99
musk2 4618 1980 166 2 0.61
optdigits 3823 1797 64 10 1.0
page-blocks 3831 1642 10 5 0.27
parkinsons 135 59 22 2 0.79
pendigits 7494 3498 16 10 1.0
segmentation 210 2100 19 7 1.0
sensorless 40956 17553 48 11 1.0
tae 105 45 5 3 0.99
wine 123 53 13 3 0.99
yeast 1038 446 9 10 0.76
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non’s entropy as H(X ) = −∑
i pi log4(pi ). In this sense, if the value is equal to 1.0, it

indicates a perfect balanced problem. In contrast, the smaller the value, the bigger the

imbalance.

The performance of the classifiers is measured in a test set. In the repository,

some of the problems are already split between a training set and a test set. For those

problems that this partition is not present, we performed cross-validation; that is, we

randomly split the dataset using the 70% of the samples for the training set, and 30%

for the test set.

4.2 Computer Equipment

The characteristics of the computer where the experiments were executed are shown

in Table 4.2. For a valid comparison, the experiments were executed using only one

core.

Table 4.2: Characteristics of the computer where the experiments were executed

Operating system Ubuntu 16.04.2 LTS
Processor (CPU) Intel (R) Xeon(R) CPU E5-2680 v4

Processor (CPU) speed 2.5GHz
Computer memory size 256 GB

Hard disk size 1 TB
Cores number 14

4.3 Performance Metrics

For analyzing the performance of classifiers from the point of view of precision and the

time that they expend training the model, we use two metrics: macro-F1 and time (in

seconds) per sample.

Accuracy is maybe the most used metric for measuring the performance of clas-

sifiers. Its value ranges from 0 to 1, being one the best performance and zero the worst.
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It can be seen as the percentage of samples that are correctly predicted. However, if

the classes are imbalanced, as the problems in this experiment, accuracy can not be

very reliable. Imagine that you have a problem where the 95% of the samples belong to

class 1, and only the 5% belong to class 2, if a classifier assigns to all samples the label

that corresponds to class 1, it will get a high value on accuracy, 0.95, but this classifier

does not do anything worthy. On the other hand, the F1 score, also known as balanced

F-score, measures the performance of a binary classifier taking into account that it be

able to predict both classes. It is robust to imbalanced problems. F1 score, for a bi-

nary classification problem, is defined as F 1 = 2 pr eci si on·r ecal l
pr eci si on+r ecal l , where r ecal l = t p

t p+ f n ,

pr eci si on = t p
t p+ f p , t p is the number of true positives, f p the number of false posi-

tives, and f n the number of false negatives. For a multi-class problem, the F1 score can

be extended as the macro-F1 score that corresponds to the average of the F1 score per

class. Besides, most of the comparisons are performed based on the rank of macro-F1.

It means, for each dataset, the classifiers are ranked according to their performance.

The number 1 is assigned to the classifier with the highest value in macro-F1, number

2 corresponds to the one with the second-highest value in macro-F1, and so on. In the

case of several classifiers have the same value in macro-F1, they got the same rank, and

the next rank number will be increased the number of repeated values. For example, if

the 5 classifiers have the following macro-F1 values: a-0.97, b-0.94, c-0.94, d-0.94, and,

e-0.89, their ranks will be: a-1, b-2, c-2, d-2, e-5.

In addition to the performance of a classifier for predicting the samples cor-

rectly, time is an essential factor in algorithms. When the number of samples in the

training set is small, generally, all the algorithms learn the model very fast. However,

if the number of samples grows, some algorithms spend considerably more and more

time, and in some cases, it could be impossible to wait until the algorithm converges.

As we mention in the previous section, the datasets vary on the number of samples,

and, logically, algorithms spend more time learning big datasets. In that sense, to nor-

malize the time, and with the idea of making comparisons based on this measure, we

divided the time (in seconds) that algorithms spend in the training phase by the num-
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ber of samples in the datasets.

4.4 Comparison of the Proposed Selection Heuristics and

Classic Selection Techniques

In this section, we show a comparison of our proposed selection heuristics for par-

ent selection against random selection and the classical selection technique based on

fitness. In other words, for parent selection, we compare the use of the following tech-

niques: (1) tournament selection based on fitness (fit), (2) random selection (rnd), and

our proposed selection heuristics, (3) tournament selection based on the absolute of

cosine similarity (sim), (4) tournament selection based on the absolute of Pearson’s

correlation coefficient (prs), and, (5) tournament selection based on accuracy (acc).

Besides, for negative selection, we analyze the use of the classical scheme, negative

tournament selection based on fitness (fit), and, random selection (rnd). All these se-

lection techniques were described in Chapter 3.

We used EvoDAG for testing different combinations of parent and negative se-

lection schemes. To improve the reading of tables and figures, we use the following no-

tation. The selection scheme that is used for parent selection is followed by the symbol

“-”, and then comes the abbreviation of the negative selection scheme. For example,

sim-fit means that EvoDAG uses a tournament based on the absolute of cosine simi-

larity for parent selection and negative tournament based on fitness for negative selec-

tion. In total, we analyze the performance of eight combinations: fit-fit, rnd-rnd, sim-

fit, sim-rnd, prs-fit, prs-rnd, acc-fit, and, acc-rnd. Furthermore, for analyzing whether

the behavior of EvoDAG is better when the heuristics are applied for the functions that

they were designed for (
∑

, Naive Bayes, NB and MN, and Nearest Centroid NC) than

using them in all functions with more than one argument (
∑

,
∏

, max, min, hypot, NB,

MN, and NC), we tested our heuristics applying them to all functions with more than

one argument. We identify those versions with the symbol *. For example, acc-rnd
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indicates that the parent selection heuristic based on accuracy is applied only to the

functions
∑

, NB, MN, and NC, however, acc-rnd* means that the heuristic is applied to

the functions:
∑

,
∏

, max, min, hypot, NB, MN, and NC.

Tables 4.3, 4.4, and Figure 4.1 shows the EvoDAG’s performance for the classifi-

cation task using different techniques for parent and negative selection. Table 4.3 and

Figure 4.1.a show the results based on macro-F1 and macro-F1 ranks, respectively, over

the test sets. It can be seen that the best performance can be reached when the heuris-

tic based on accuracy for parent selection and random negative selection (acc-rnd) are

used, followed by the use of the same scheme for parent selection and negative tour-

nament selection based on fitness (acc-fit). The combinations acc-rnd, acc-fit, sim-fit,

prs-fit*, prs-rnd, prs-fit, prs-rnd*, sim-fit*, sim-rnd, and, sim-rnd* are better than fit-fit

in terms of macro-F1 average rank. It means that the use of our proposed heuristics im-

proves the performance of the classical selection schemes, fit-fit. Surprisingly, random

selection for parent and negative selection, rnd-rnd, also improves the performance of

EvoDAG using the classical selection schemes based on fitness (fit-fit). Besides, in gen-

eral, the use of negative random selection is better than negative selection based on

fitness. Moreover, there is a tend that when the heuristics are applied to all functions

with more than one argument (
∑

,
∏

, max, min, hypot, NB, MN, and NC), the combi-

nations with the symbol *, the results are worse than when they are applied only to the

functions that they were designed for (
∑

, Naive Bayes and Nearest Centroid). Based

on the colors of Table 4.3, it can be observed that acc-rnd* and acc-fit* produce con-

siderably worse results that the rest of the combinations. The results over the training

sets (Table 4.4 and Figure 4.1.b) are similar to the ones in the test sets (Table 4.3 and

Figure 4.1.a), but in this case prs-rnd is the one that produces the best results in the

training sets. Comparing by the time that the classifiers spend in the training phase

(Figure 4.1.c), it can be seen that rnd-rnd is the fastest, this is because it is the most

straightforward.
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Table 4.3: Comparison of EvoDAG’s performance using different techniques for parent and negative selection. The values represent the
macro-F1 value obtained over the test sets. Columns are ordered based on the macro-F1 average rank. The symbol * represents that the
heuristic for parent selection was applied to all functions with arity greater than one. The best performance in each problem is indicated
in boldface. Colors indicate the performance of the selection techniques combination, the bluer, the better, in the opposite, the more
gray, the worse.

acc-rnd acc-fit rnd-rnd sim-fit prs-fit* prs-rnd prs-fit prs-rnd* sim-fit* sim-rnd sim-rnd* fit-fit acc-rnd* acc-fit*
ad 0.940 0.934 0.932 0.933 0.928 0.933 0.932 0.921 0.934 0.934 0.923 0.934 0.554 0.548
adult 0.793 0.792 0.792 0.791 0.790 0.791 0.793 0.792 0.791 0.791 0.791 0.791 0.685 0.685
agaricus-lepiota 0.684 0.684 0.682 0.684 0.683 0.682 0.685 0.682 0.684 0.682 0.682 0.677 0.037 0.037
aps-failure 0.828 0.840 0.864 0.839 0.838 0.830 0.836 0.850 0.839 0.825 0.836 0.847 0.736 0.736
banknote 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.821 0.821
bank 0.762 0.760 0.765 0.763 0.760 0.762 0.762 0.760 0.758 0.762 0.762 0.756 0.713 0.713
biodeg 0.841 0.835 0.851 0.842 0.834 0.823 0.849 0.834 0.842 0.838 0.834 0.829 0.626 0.626
car 0.866 0.914 0.860 0.829 0.870 0.848 0.868 0.858 0.885 0.830 0.839 0.843 0.294 0.294
census-income 0.767 0.510 0.770 0.767 0.768 0.767 0.511 0.765 0.767 0.765 0.767 0.753 0.419 0.419
cmc 0.536 0.548 0.526 0.537 0.541 0.549 0.547 0.550 0.547 0.534 0.541 0.531 0.467 0.467
dota2 0.595 0.594 0.594 0.595 0.594 0.592 0.593 0.594 0.594 0.594 0.594 0.595 0.474 0.475
drug-consumption 0.227 0.204 0.197 0.224 0.229 0.209 0.209 0.214 0.211 0.223 0.210 0.196 0.203 0.203
fertility 0.453 0.453 0.453 0.453 0.453 0.453 0.442 0.453 0.453 0.453 0.453 0.442 0.396 0.396
IndianLiverPatient 0.661 0.711 0.694 0.649 0.654 0.639 0.654 0.667 0.657 0.642 0.647 0.642 0.631 0.631
iris 0.980 0.980 0.980 0.980 0.980 0.980 0.960 0.980 0.960 0.980 0.960 0.980 0.960 0.960
krkopt 0.188 0.183 0.198 0.143 0.160 0.160 0.185 0.164 0.145 0.142 0.145 0.147 0.124 0.124
letter-recognition 0.653 0.652 0.658 0.646 0.646 0.646 0.652 0.646 0.646 0.646 0.646 0.646 0.646 0.646
magic04 0.848 0.849 0.846 0.847 0.843 0.848 0.849 0.844 0.839 0.846 0.840 0.834 0.655 0.655
ml-prove 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.704 0.704
musk1 0.883 0.856 0.867 0.877 0.890 0.883 0.860 0.876 0.868 0.891 0.897 0.862 0.366 0.366
musk2 0.943 0.906 0.940 0.942 0.942 0.945 0.942 0.937 0.938 0.948 0.936 0.951 0.455 0.455
optdigits 0.953 0.949 0.955 0.946 0.953 0.947 0.955 0.950 0.943 0.946 0.944 0.945 0.733 0.733
page-blocks 0.825 0.791 0.761 0.772 0.803 0.804 0.793 0.805 0.765 0.773 0.766 0.773 0.757 0.757
parkinsons 0.747 0.752 0.730 0.734 0.734 0.718 0.653 0.734 0.701 0.718 0.718 0.667 0.672 0.672
pendigits 0.945 0.948 0.940 0.933 0.940 0.950 0.940 0.937 0.915 0.933 0.918 0.937 0.802 0.802
segmentation 0.910 0.904 0.909 0.896 0.917 0.897 0.912 0.915 0.889 0.897 0.890 0.902 0.816 0.816
sensorless 0.959 0.966 0.953 0.953 0.963 0.959 0.963 0.957 0.958 0.948 0.952 0.965 0.796 0.796
tae 0.361 0.315 0.321 0.419 0.299 0.323 0.418 0.321 0.383 0.299 0.471 0.438 0.321 0.321
wine 0.982 0.982 0.982 0.982 0.962 0.979 0.979 0.962 0.982 0.982 1.000 0.982 0.982 0.982
yeast 0.468 0.454 0.455 0.457 0.458 0.452 0.430 0.450 0.460 0.444 0.445 0.456 0.457 0.457

Average macro-F1 0.753 0.742 0.749 0.748 0.748 0.746 0.739 0.747 0.745 0.742 0.747 0.744 0.577 0.577
Average rank 3.6 4.9 5.1 5.4 5.7 5.9 5.9 5.9 6.3 6.8 7.2 7.6 11.7 11.7
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Table 4.4: Comparison of EvoDAG’s performance using different techniques for parent and negative selection. The values represent the
macro-F1 value obtained over the training sets. Columns are ordered based on the macro-F1 average rank. The symbol * represents
that the heuristic for parent selection was applied to all functions with arity greater than one. The best performance in each problem is
indicated in boldface. Colors indicate the performance of the selection techniques combination, the bluer, the better, in the opposite,
the more gray, the worse.

prs-rnd acc-rnd prs-fit prs-fit* sim-fit acc-fit prs-rnd* rnd-rnd fit-fit sim-rnd sim-rnd* sim-fit* acc-rnd* acc-fit*
ad 0.944 0.946 0.942 0.941 0.943 0.932 0.928 0.940 0.942 0.937 0.933 0.940 0.530 0.524
adult 0.803 0.800 0.801 0.802 0.802 0.801 0.803 0.801 0.802 0.802 0.800 0.802 0.688 0.688
agaricus-lepiota 0.703 0.704 0.703 0.703 0.702 0.702 0.706 0.707 0.697 0.704 0.699 0.700 0.035 0.035
aps-failure 0.805 0.808 0.806 0.805 0.806 0.815 0.828 0.843 0.820 0.799 0.818 0.814 0.711 0.711
banknote 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.858 0.858
bank 0.761 0.759 0.759 0.759 0.760 0.757 0.759 0.760 0.754 0.759 0.759 0.758 0.697 0.697
biodeg 0.906 0.915 0.912 0.908 0.913 0.902 0.904 0.902 0.904 0.910 0.906 0.905 0.645 0.645
car 0.869 0.878 0.884 0.866 0.825 0.912 0.857 0.851 0.874 0.839 0.864 0.872 0.283 0.283
census-income 0.511 0.510 0.509 0.765 0.766 0.763 0.509 0.512 0.501 0.765 0.509 0.509 0.418 0.418
cmc 0.620 0.612 0.611 0.597 0.628 0.597 0.598 0.610 0.604 0.631 0.623 0.629 0.475 0.475
dota2 0.602 0.601 0.601 0.602 0.601 0.601 0.602 0.602 0.602 0.602 0.602 0.601 0.479 0.477
drug-consumption 0.432 0.454 0.430 0.461 0.432 0.408 0.452 0.422 0.413 0.431 0.477 0.432 0.399 0.399
fertility 0.822 0.822 0.822 0.822 0.822 0.734 0.822 0.892 0.822 0.951 0.892 0.951 0.634 0.634
IndianLiverPatient 0.695 0.677 0.690 0.708 0.683 0.690 0.685 0.664 0.727 0.671 0.674 0.696 0.593 0.593
iris 0.979 0.979 0.969 0.979 0.959 0.979 0.979 0.969 0.969 0.959 0.979 0.959 0.959 0.959
krkopt 0.160 0.191 0.190 0.161 0.140 0.193 0.162 0.205 0.147 0.138 0.143 0.143 0.117 0.117
letter-recognition 0.650 0.655 0.658 0.650 0.650 0.655 0.650 0.660 0.650 0.650 0.650 0.650 0.650 0.650
magic04 0.857 0.856 0.857 0.850 0.852 0.857 0.852 0.854 0.842 0.854 0.848 0.849 0.658 0.658
ml-prove 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.697 0.697
musk1 0.982 0.972 0.969 0.975 0.976 0.960 0.982 0.972 0.979 0.976 0.969 0.969 0.360 0.360
musk2 0.969 0.966 0.970 0.966 0.970 0.928 0.969 0.966 0.973 0.974 0.967 0.967 0.459 0.459
optdigits 0.982 0.979 0.983 0.983 0.973 0.975 0.982 0.981 0.979 0.972 0.972 0.974 0.742 0.742
page-blocks 0.776 0.800 0.786 0.790 0.767 0.796 0.798 0.765 0.748 0.744 0.738 0.738 0.702 0.702
parkinsons 0.871 0.886 0.907 0.862 0.886 0.979 0.851 0.829 0.840 0.859 0.901 0.909 0.763 0.763
pendigits 0.983 0.984 0.983 0.983 0.979 0.986 0.983 0.982 0.983 0.979 0.973 0.973 0.869 0.869
segmentation 0.931 0.946 0.956 0.941 0.937 0.947 0.941 0.931 0.942 0.932 0.926 0.917 0.818 0.818
sensorless 0.965 0.959 0.963 0.963 0.959 0.966 0.957 0.958 0.965 0.953 0.958 0.958 0.798 0.798
tae 0.773 0.696 0.736 0.733 0.761 0.812 0.728 0.637 0.829 0.720 0.762 0.784 0.490 0.490
wine 0.984 0.992 1.000 0.992 0.992 1.000 0.992 0.992 0.984 0.992 0.992 0.992 0.984 0.984
yeast 0.580 0.594 0.570 0.575 0.593 0.571 0.562 0.577 0.569 0.590 0.574 0.569 0.539 0.540

Average macro-F1 0.797 0.798 0.799 0.805 0.803 0.807 0.795 0.793 0.795 0.803 0.797 0.799 0.602 0.602
Average rank 4.6 4.8 5.0 5.4 5.7 5.8 5.8 6.2 6.5 6.5 7.0 7.0 12.6 12.6
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a b c

Figure 4.1: Selection schemes comparison. In a) and b), boxplots present the macro-F1 ranks measured over the test (a) and train (b)
datasets. c) Boxplots present the time, in seconds, required by EvoDAG using the different selection techniques combinations in the
training phase. The time is divided by the number of train samples in the datasets. In all figures, green boxplots represent where the
selection heuristics (sim, prs, or acc) are applied to all functions. The average rank, or time per sample, sorts classifiers, and it appears
on the left. Source: Own elaboration.
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In Figure 4.2, an analysis in two dimensions is performed. The x-axis repre-

sents the performance of EvoDAG’s and the selection schemes combinations using the

macro-F1 average rank. The y-axis represents the average time per sample (in seconds)

that EvoDAG spends on the training phase. We analyze the results using the technique

Pareto frontier, which is commonly used when we tried to reach two objectives. In this

image, the closest the technique to the origin, the better it is in terms of performance

and time. We can see that the classifiers that use the selection heuristics in all functions

with more than one argument, the ones with the symbol *, are further to the origin. It is

because they spend much time in the training phase, and their performance, based on

macro-F1 average rank, is poor. The classifiers that are part of the Pareto frontier are

acc-rnd, acc-fit and rnd-rnd. All of them are better than the classical selection scheme

based on fitness (fit-fit), in performance, macro-F1 average rank, and time.
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Figure 4.2: Comparison of the different selection schemes combinations based on macro-F1 average rank and the time, in seconds,
required by EvoDAG’s training phase. The time is presented in seconds, and it is the average time per sample. Source: Own elaboration.
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The statistical test used was Wilcoxon signed-rank test [102], and the p-values

were adjusted with the Holm-Bonferroni method [44] to consider multiple compar-

isons. Macro-F1 values were used for the statistical test. There was found that the best

combination of selection schemes, acc-rnd, is statistically better than prs-rnd, prs-

rnd*, sim-rnd, fit-fit, acc-rnd*, and acc-fit*, with a confidence of 95%. It indicates that

the combination of our proposed heuristic based on accuracy for parent selection and

random negative selection (acc-rnd) performs statistically better than the classical se-

lection schemes based on fitness. In addition, Figure 4.3 shows the results of Wilcoxon

signed-rank test [102] by pairs of techniques. It confirms that acc-rnd is statistically

better than fit-fit with a confidence of 95%.

Figure 4.3: Statistical comparison (Wilcoxon signed-rank test) of the different selec-
tion schemes combinations based on macro-F1. Black cells represent that the pair of
schemes are statistically different with a 95% confidence. Source: Own elaboration.

An analysis of the behavior of the selection schemes combinations taking into

account the datasets’ properties, as classes’ entropy, number of classes and number

of variables, is presented in Tables 4.5, 4.6 and 4.7, respectively. The tables show the

macro-F1 results, but the dataset’ property orders the rows. If the results of combina-

tions depended on the properties of the dataset, we could see patterns in the columns.
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For example, if one combination were better when the value of classes’ entropy is

smaller, we could see that the column corresponding to that combination started with

green, and then it became red. That is not the case of any of the combinations in the

Tables 4.5, 4.6 and 4.7. For that reason, we can affirm that the combinations of selec-

tion schemes do not depend on datasets’ properties.

Table 4.5: Comparison of EvoDAG’s performance using different techniques for parent
and negative selection, ordered by classes’ entropy of the datasets. The values repre-
sent the macro-F1 value obtained over the test sets. Rows and columns are ordered
by classes’ entropy, and macro-F1 average rank, respectively. The best performance in
each problem is indicated in boldface. Colors indicate the performance of the selec-
tion techniques combination, the bluer, the better, in the opposite, the more gray, the
worse.

Classes’ entropy acc-rnd acc-fit rnd-rnd sim-fit prs-fit prs-rnd sim-rnd fit-fit
aps-failure 0.12 0.828 0.840 0.864 0.839 0.836 0.830 0.825 0.847
page-blocks 0.27 0.825 0.791 0.761 0.772 0.793 0.804 0.773 0.773
census-income 0.34 0.767 0.510 0.770 0.767 0.511 0.767 0.765 0.753
fertility 0.43 0.453 0.453 0.453 0.453 0.442 0.453 0.453 0.442
drug-consumption 0.44 0.227 0.204 0.197 0.224 0.209 0.209 0.223 0.196
bank 0.52 0.762 0.760 0.765 0.763 0.762 0.762 0.762 0.756
ad 0.58 0.940 0.934 0.932 0.933 0.932 0.933 0.934 0.934
car 0.6 0.866 0.914 0.860 0.829 0.868 0.848 0.830 0.843
musk2 0.61 0.943 0.906 0.940 0.942 0.942 0.945 0.948 0.951
yeast 0.76 0.468 0.454 0.455 0.457 0.430 0.452 0.444 0.456
parkinsons 0.79 0.747 0.752 0.730 0.734 0.653 0.718 0.718 0.667
adult 0.8 0.793 0.792 0.792 0.791 0.793 0.791 0.791 0.791
agaricus-lepiota 0.81 0.684 0.684 0.682 0.684 0.685 0.682 0.682 0.677
krkopt 0.84 0.188 0.183 0.198 0.143 0.185 0.160 0.142 0.147
IndianLiverPatient 0.85 0.661 0.711 0.694 0.649 0.654 0.639 0.642 0.642
biodeg 0.91 0.841 0.835 0.851 0.842 0.849 0.823 0.838 0.829
magic04 0.93 0.848 0.849 0.846 0.847 0.849 0.848 0.846 0.834
ml-prove 0.98 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
cmc 0.98 0.536 0.548 0.526 0.537 0.547 0.549 0.534 0.531
musk1 0.99 0.883 0.856 0.867 0.877 0.860 0.883 0.891 0.862
banknote 0.99 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
wine 0.99 0.982 0.982 0.982 0.982 0.979 0.979 0.982 0.982
tae 0.99 0.361 0.315 0.321 0.419 0.418 0.323 0.299 0.438
sensorless 1.0 0.959 0.966 0.953 0.953 0.963 0.959 0.948 0.965
segmentation 1.0 0.910 0.904 0.909 0.896 0.912 0.897 0.897 0.902
dota2 1.0 0.595 0.594 0.594 0.595 0.593 0.592 0.594 0.595
optdigits 1.0 0.953 0.949 0.955 0.946 0.955 0.947 0.946 0.945
letter-recognition 1.0 0.653 0.652 0.658 0.646 0.652 0.646 0.646 0.646
pendigits 1.0 0.945 0.948 0.940 0.933 0.940 0.950 0.933 0.937
iris 1.0 0.980 0.980 0.980 0.980 0.960 0.980 0.980 0.980

Average macro-F1 0.753 0.742 0.749 0.748 0.739 0.746 0.742 0.744
Average rank 2.8 3.6 3.7 4.0 4.1 4.2 4.9 5.1

In Section 1.4, we mentioned that EvoDAG uses an ensemble of 30 models to

improve its performance. Figure 4.4 presents an analysis of the best combination of

selection schemes, EvoDAG acc-rnd, by the number of models in the ensemble. It can

be observed that results converge around the 30th model.
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Table 4.6: Comparison of EvoDAG’s performance using different techniques for parent
and negative selection, ordered by number of classes of the datasets. The values rep-
resent the macro-F1 value obtained over the test sets. Rows and columns are ordered
by number of classes, and macro-F1 average rank, respectively. The best performance
in each problem is indicated in boldface. Colors indicate the performance of the selec-
tion techniques combination, the bluer, the better, in the opposite, the more gray, the
worse.

Number of classes acc-rnd acc-fit rnd-rnd sim-fit prs-fit prs-rnd sim-rnd fit-fit
ad 2 0.940 0.934 0.932 0.933 0.932 0.933 0.934 0.934
adult 2 0.793 0.792 0.792 0.791 0.793 0.791 0.791 0.791
aps-failure 2 0.828 0.840 0.864 0.839 0.836 0.830 0.825 0.847
banknote 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
bank 2 0.762 0.760 0.765 0.763 0.762 0.762 0.762 0.756
biodeg 2 0.841 0.835 0.851 0.842 0.849 0.823 0.838 0.829
parkinsons 2 0.747 0.752 0.730 0.734 0.653 0.718 0.718 0.667
census-income 2 0.767 0.510 0.770 0.767 0.511 0.767 0.765 0.753
musk2 2 0.943 0.906 0.940 0.942 0.942 0.945 0.948 0.951
dota2 2 0.595 0.594 0.594 0.595 0.593 0.592 0.594 0.595
musk1 2 0.883 0.856 0.867 0.877 0.860 0.883 0.891 0.862
fertility 2 0.453 0.453 0.453 0.453 0.442 0.453 0.453 0.442
IndianLiverPatient 2 0.661 0.711 0.694 0.649 0.654 0.639 0.642 0.642
ml-prove 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
magic04 2 0.848 0.849 0.846 0.847 0.849 0.848 0.846 0.834
tae 3 0.361 0.315 0.321 0.419 0.418 0.323 0.299 0.438
iris 3 0.980 0.980 0.980 0.980 0.960 0.980 0.980 0.980
wine 3 0.982 0.982 0.982 0.982 0.979 0.979 0.982 0.982
cmc 3 0.536 0.548 0.526 0.537 0.547 0.549 0.534 0.531
car 4 0.866 0.914 0.860 0.829 0.868 0.848 0.830 0.843
page-blocks 5 0.825 0.791 0.761 0.772 0.793 0.804 0.773 0.773
drug-consumption 7 0.227 0.204 0.197 0.224 0.209 0.209 0.223 0.196
segmentation 7 0.910 0.904 0.909 0.896 0.912 0.897 0.897 0.902
agaricus-lepiota 7 0.684 0.684 0.682 0.684 0.685 0.682 0.682 0.677
optdigits 10 0.953 0.949 0.955 0.946 0.955 0.947 0.946 0.945
pendigits 10 0.945 0.948 0.940 0.933 0.940 0.950 0.933 0.937
yeast 10 0.468 0.454 0.455 0.457 0.430 0.452 0.444 0.456
sensorless 11 0.959 0.966 0.953 0.953 0.963 0.959 0.948 0.965
krkopt 18 0.188 0.183 0.198 0.143 0.185 0.160 0.142 0.147
letter-recognition 26 0.653 0.652 0.658 0.646 0.652 0.646 0.646 0.646

Average macro-F1 0.753 0.742 0.749 0.748 0.739 0.746 0.742 0.744
Average rank 2.8 3.6 3.7 4.0 4.1 4.2 4.9 5.1
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Table 4.7: Comparison of EvoDAG’s performance using different techniques for par-
ent and negative selection, ordered by number of variables of the datasets. The values
represent the macro-F1 value obtained over the test sets. Rows and columns are or-
dered by number of variables, and macro-F1 average rank, respectively. The best per-
formance in each problem is indicated in boldface. Colors indicate the performance of
the selection techniques combination, the bluer, the better, in the opposite, the more
gray, the worse.

Number of variables acc-rnd acc-fit rnd-rnd sim-fit prs-fit prs-rnd sim-rnd fit-fit
iris 4 0.980 0.980 0.980 0.980 0.960 0.980 0.980 0.980
banknote 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
tae 5 0.361 0.315 0.321 0.419 0.418 0.323 0.299 0.438
krkopt 6 0.188 0.183 0.198 0.143 0.185 0.160 0.142 0.147
car 6 0.866 0.914 0.860 0.829 0.868 0.848 0.830 0.843
fertility 9 0.453 0.453 0.453 0.453 0.442 0.453 0.453 0.442
cmc 9 0.536 0.548 0.526 0.537 0.547 0.549 0.534 0.531
yeast 9 0.468 0.454 0.455 0.457 0.430 0.452 0.444 0.456
IndianLiverPatient 10 0.661 0.711 0.694 0.649 0.654 0.639 0.642 0.642
magic04 10 0.848 0.849 0.846 0.847 0.849 0.848 0.846 0.834
page-blocks 10 0.825 0.791 0.761 0.772 0.793 0.804 0.773 0.773
wine 13 0.982 0.982 0.982 0.982 0.979 0.979 0.982 0.982
adult 14 0.793 0.792 0.792 0.791 0.793 0.791 0.791 0.791
bank 16 0.762 0.760 0.765 0.763 0.762 0.762 0.762 0.756
letter-recognition 16 0.653 0.652 0.658 0.646 0.652 0.646 0.646 0.646
pendigits 16 0.945 0.948 0.940 0.933 0.940 0.950 0.933 0.937
segmentation 19 0.910 0.904 0.909 0.896 0.912 0.897 0.897 0.902
agaricus-lepiota 22 0.684 0.684 0.682 0.684 0.685 0.682 0.682 0.677
parkinsons 22 0.747 0.752 0.730 0.734 0.653 0.718 0.718 0.667
drug-consumption 30 0.227 0.204 0.197 0.224 0.209 0.209 0.223 0.196
census-income 41 0.767 0.510 0.770 0.767 0.511 0.767 0.765 0.753
biodeg 41 0.841 0.835 0.851 0.842 0.849 0.823 0.838 0.829
sensorless 48 0.959 0.966 0.953 0.953 0.963 0.959 0.948 0.965
ml-prove 56 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999
optdigits 64 0.953 0.949 0.955 0.946 0.955 0.947 0.946 0.945
dota2 116 0.595 0.594 0.594 0.595 0.593 0.592 0.594 0.595
musk2 166 0.943 0.906 0.940 0.942 0.942 0.945 0.948 0.951
musk1 166 0.883 0.856 0.867 0.877 0.860 0.883 0.891 0.862
aps-failure 170 0.828 0.840 0.864 0.839 0.836 0.830 0.825 0.847
ad 1557 0.940 0.934 0.932 0.933 0.932 0.933 0.934 0.934

Average macro-F1 0.753 0.742 0.749 0.748 0.739 0.746 0.742 0.744
Average rank 2.8 3.6 3.7 4.0 4.1 4.2 4.9 5.1
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Figure 4.4: Analysis of EvoDAG acc-rnd according to the number of models in the ensemble. Lines represent the ensemble macro-F1
result using the number of models represented in axis-x. Source: Own elaboration.
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Figure 4.5 shows the results of EvoDAG with several selection schemes combi-

nations changing the number of arguments of function
∑

. At the ending of the se-

lection scheme’s name appears the number of arguments that function
∑

receives, by

default it is 60. For this analysis only the following combinations were used: acc-rnd,

rnd-rnd and fit-fit. In general, the use of the combination of parent selection using our

heuristic based on accuracy and random negative selection presents the best perfor-

mance. Followed by random selection for parent and negative selection. When only

10 arguments are used for the function
∑

is a special case. fit-fit-10, rnd-rnd-10, and

acc-fit-10 appear in the last positions, also, only in this case, fit-fit-10 is better than rnd-

rnd-10 and acc-rnd-10, but statistical differences were not found. Our interpretation

is: the selection heuristic based on accuracy needs a high number of arguments in the

function
∑

for working better. Based on our experiments, 60 is optimum. Additionally,

there is a tendency that acc-rnd is better than fit-fit despite the number of arguments

in function
∑

are different.

Discussion: First, we demonstrate that our selection heuristics based on

accuracy (acc), cosine similarity (sim), and Pearson’s correlation coefficient (prs) per-

formed better when they are applied to the functions
∑

, Naive Bayes (NB and MN), and

Nearest Centroid (NC) than when they are used for all the functions with more than one

argument (
∑

,
∏

, max, min, hypot, NB, MN, and NC). It is because the proposed heuris-

tics were designed based on the properties of the functions
∑

, Naive Bayes, and Nearest

Centroid. Based on the results, the best parent selection heuristic is the one based on

accuracy. We assume that it is because we are solving classifications problems, and

accuracy is the most straightforward technique for comparing individuals’ semantics

in multi-class problems. Besides, the combination of selection schemes rnd-rnd, ran-

dom selection of parents and negative random selection is better than fit-fit, parent

and negative selection based on fitness. We assume that the reason is because rnd-

rnd promotes population diversity, also, when EvoDAG optimizes the parameters of

functions with ordinary least squares (see Section 1.4), it improves the semantics of in-

dividuals using the target semantics.
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Figure 4.5: Analysis of selection schemes combinations changing the number of argu-
ments in the function

∑
. a) Boxplots present the macro-F1 ranks measured over the

test datasets. The average rank sorts classifiers, and it appears on the left. b) Statistical
comparison (Wilcoxon signed-rank test) of the different selection schemes combina-
tions based on macro-F1. Black cells represent that the pair of schemes are statistically
different with a 95% confidence. Source: Own elaboration.
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4.5 Comparison of the Proposed Selection Heuristics and

State-of-the-Art Selection Schemes

As we mentioned in Chapter 2, some new selection techniques for Genetic Program-

ming have been proposed. For us, because of the relationship with our selection heuris-

tics, the most important ones for parent selection are Angle-Driven-Selection [15] and

Novelty Search [62]. For that reason, we decide to implement them in EvoDAG and

compare them against our proposal. In this section, we describe in detail those tech-

niques and how they were implemented in EvoDAG. Moreover, the results are shown.

Angle-Driven Selection

Angle-Driven Selection

The objective of Angle-Driven Selection is to maximize the angle of parents in

the error space.

γr = arccos

(
(~t − ~P1) · (~t − ~P2)∥∥~t − ~P1

∥∥∥∥~t − ~P2
∥∥
)

Chen et al. said in [15], “The angle-awareness is expected to make geometric

operators more effective and help the evolutionary process to converge to the target

semantics much more accurately and faster”. They started with the idea that individ-

uals’ semantics can be represented as vectors in the semantics space, then, the angle

between two individuals ~p1 and ~p2 can be calculated as γ = arccos
(
~p1

||~p1|| ·
~p2

||~p2||
)
, where

||~p|| =∑
j

√
p2

j . In addition, they calculate the angle between individuals’ semantics in

the error space (described in Section 2.3) to include the target semantics t , this is, the

angle between relative individuals. The angle between the relative semantics of two

individuals ~p1 and ~p2 is defined as:
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γr = arccos

(
(~t − ~p1) · (~t − ~p2)∥∥~t − ~p1

∥∥∥∥~t − ~p2
∥∥
)

(4.1)

Angle-Driven Selection (ADS) was proposed to select parents for geometric crossover.

ADS selects the first parent ~p1 according to the tournament selection based on fitness.

An iterative procedure is performed to select the second parent ~p2 according to its an-

gle distance from ~p1. The goal is to find parents with an angle distance near to 180

degrees.

Originally, ADS was designed for geometric crossover, and in the case of EvoDAG,

several functions that need more than one argument are applied, as:
∑

,
∏

, max, min,

hypot, NB, MN, and NC. For that reason, we needed to modify the implementation

but keeping the main idea of ADS. First, a parent is selected using a tournament based

on fitness, as the original proposal of ADS, then, the next arguments, or parents, are se-

lected using a tournament based on the relative angle between a candidate and the first

parent. A simple example is showed in Figure 4.6. In this case, the function
∑

is selected

for creating the offspring and it needs three arguments. The first parent is selected from

the population P using a tournament based on fitness. Then, the next arguments are

independently selected. For each one, a tournament is performed, which is described

as follows. First, two individuals are randomly selected from the population P , and the

relative angle (Equation 4.1) between their semantics and the first argument semantics

is calculated. The individual with the maximum angle between its semantics and the

first parent semantics is selected as argument. Algorithm 10 describes the selection of

arguments based on ADS in EvoDAG. It is important to mention that, as we affirmed in

Section 1.4, the individuals’ semantics in EvoDAG when solving classification problems

is an array of semantics vectors, then, the relative angle between individuals’ semantics

is calculated as the sum of angles among pairs of vectors. This process is described in

the algorithm.
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Algorithm 10: Selection of arguments based on Angle-Driven Selection
(ads) in EvoDAG

Input: k, a population of individuals P

Input: t s, the tournament size
Input: t , the array of target semantics
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
Select the first parent F using tournament selection based on fitness;
for i from 2 to k do

A ← an individual randomly selected from the population P ;
semanti csA ← the array of individual A’s semantics vectors;
ang l e A ← 0;
for each element in semanti csF and semanti csA do

ang l e A ← ang l e A +ar ccos

(
(~ti− ~semanti csF i )·(~ti− ~semanti csAi )∥∥∥~ti− ~semanti csF i

∥∥∥∥∥∥~ti− ~semanti csAi

∥∥∥
)

;

end
for j from 2 to t s do

B ← an individual randomly selected from the population P ;
semanti csB ← the array of individual B ’s semantics vectors;
ang l eB ← 0;
for each element in semanti csF and semanti csB do

ang l eB ← ang l eB +ar ccos

(
(~ti− ~semanti csF i )·(~ti− ~semanti csBi )∥∥∥~ti− ~semanti csF i

∥∥∥∥∥∥~ti− ~semanti csBi

∥∥∥
)

;

end
if ang l eB > ang l e A then

A ← B ;
ang l e A ← ang l eB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;
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Figure 4.6: Example of parent selection based on ADS (in EvoDAG). Source: Own elab-
oration.

Novelty Search

Novelty Search

The aim of Novelty Search, in the case of parent selecting, is to choose as parents

individuals that are novel in the population. Each argument is independently

selected using tournament selection based on novelty.

log(φ(x)) =∑
j

log

(
1

P j (x j )+ε
)

Novelty Search [62] proposes to replace the fitness function by individuals’ nov-

elty with the idea of promoting population diversity. The novelty of the individual is

computed as the average of the distances between it and its k-nearest neighbors in the

semantic space. Rather than viewing open-ended evolution as an adaptive competi-

tion, it can be viewed simply as a passive drift through the lattice of novelty. We use

the equations proposed by Naredo et al. in [72] for evolving classifiers in Genetic Pro-
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gramming using Novelty Search. They used as individual’s novelty φ(x) the inverse of

the probability of observing that individual in the population, this is, φ(x) = 1
P (x) . As

we mentioned in Section 1.4, an individual can be represented as its labels vectors, this

is, a vector whose entries are the labels that the individual’s classifier assigns to each

training sample. Based on those labels vectors, the novelty of individuals is calculated.

For explaining the calculus, we use the example showed in Figure 4.7. Columns and

rows represent individuals and training samples, respectively. In this example there

are only 3 classes: A, B, and C. For each training sample, the probability of each classes

is calculated, we can do it by counting. In case of the training sample 1, the probabil-

ity of class A, P(A), is equal to 0.4 because there are only 2 A’s in 5 individuals. Using

those probabilities, we can calculate the novelty of individuals φ. For calculating the

novelty of an individual x, we use the equation φ(x) = 1
P (x) . In addition, we can cal-

culate P (x) as the multiplication of the probabilities of individual’s values over all the

training samples. This is, φ(x) = 1∏
j P j (x j ) , where j goes for each training sample. In

Figure 4.7 this calculation is showed. The multiplication of probabilities can be result

in numeric problems, for solving that, it is changed for the sum of logarithms, this is,

log(φ(x)) = ∑
j log

(
1

P j (x j )

)
. For avoiding numerical errors caused by divisions by zero,

an small value ε is added to the probabilities, as it can be seen as follows:

log(φ(x)) =∑
j

log

(
1

P j (x j )+ε
)

(4.2)

Specifically, in EvoDAG, each one of the k arguments (or parents) are indepen-

dently selected from the population P using a tournament selection based on novelty

search. Figure 4.8 shows a simple example of parent selection in EvoDAG. In this case,

an offspring is created with the function
∑

. Three parents need to be chosen from the

population P for becoming arguments. For each one of the arguments, two individ-

uals and randomly selected from the population and the most novel one is chosen as

parent. In this case, the number of individuals in the tournament t s is two. Algorithm

11 describes the selection of arguments in EvoDAG based on novelty search.
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Figure 4.7: Example of individual’s novelty calculation. Source: Own elaboration.

Figure 4.8: Parent selection based on novelty search (in EvoDAG). Source: Own elabo-
ration.
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Algorithm 11: Selection of arguments based on Novelty Search (nvs) in
EvoDAG

Input: k, the number of arguments
Input: t s, the tournament size
Output: The list of individuals that will be passed as arguments
ar g s ← an empty list of individuals;
for i from 1 to k do

A ← an individual randomly selected from the population P ;

novel t y A ←∑
j log

(
1

P j (A j )+ε
)
;

for j from 2 to t s do
B ← an individual randomly selected from the population P ;

novel t yB ←∑
j log

(
1

P j (B j )+ε
)
;

if novel t yB > novel t y A then
A ← B ;
novel t y A ← novel t yB ;

end
end
Add the individual A to ar g s;

end
Return ar g s;

Results of the Comparison of our Proposed Selection Heuristics against

ADS and NVS

As it can be observed in the explanation of ads, the authors proposed first select the in-

dividuals of the tournament based on fitness, and then apply other tournament based

on their relative angle in the error space. For that reason, we decided to add another

parameter to our heuristics and to ads, this is, the way that individuals of the tourna-

ment are selected, it can be randomly (rnd) or based on fitness (fit). The combinations

of selection techniques’ notation is as follows, the symbol “-” follows the parent selec-

tion technique, then comes the abbreviation of the negative selection scheme, and, for

our heuristics and ads, at the ending, after the symbols “–”, it comes the abbreviation

of the scheme for selecting the individuals that participate in the tournaments. For

example, acc-rnd–fit means that tournament selection based on accuracy is used for

parent selection, the negative selection is performed randomly, and the individuals in

the tournament based on accuracy are previously selected using a tournament based
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on fitness.

Figure 4.9 presents the results of the comparison, based on macro-F1, of our

proposed heuristics (acc, prs, and sim) against state-of-the-art selection techniques:

Angle-Driven Selection (ads) and Novelty Search (nvs). In Figure 4.1.a, it can be ob-

served that the performance of our heuristics is generally better than ads and nvs. As

the behavior of our heuristics, we can see that ads works better when it is applied only

to the functions
∑

, Naive Bayes, and Nearest Centroid than when it is applied to all

functions with more than one argument. Besides, ads is better when it uses the com-

bination of selection schemes ads-rnd–rnd than the original proposal ads-fit–fit. The

Wilcoxon statistical test (see 4.9.b) presents that acc-rnd–rnd is statistically better than

ads and nvs.

Figure 4.10 presents a comparison of different selection schemes, including our

proposed heuristics and state-of-the-art selection schemes based on two criteria: macro-

F1 average rank and the time that EvoDAG spends on the training phase. The closest

the technique to the origin, the better it is in terms of performance and time. It can be

observed that Angle-Driven Selection (ads) and Novelty Search (nvs) are further to the

origin. Based on the experiments, it indicates that our proposed heuristics performed

better, for classification tasks than ads and nvs based on macro-F1 and time.

Discussion: We consider that, in these experiments, our heuristics are bet-

ter than Angle-Driven Selection (ads) because all they were implemented in EvoDAG,

and ads was designed for working with geometric crossover, and our heuristics were

inspired in the properties of the function
∑

and the classifiers Naive Bayes and Nearest

Centroid that are part of EvoDAG. In the case of Novelty Search (nvs), we assume that

the problem with nvs was that it searches for individuals that are different from the

rest of individuals in the population, and when the functions’ arguments are selected,

individuals are different from the majority of individuals in the population but maybe

among them are similar.
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Figure 4.9: Proposed heuristics against state-of-the-art selection schemes based on
macro-F1. a) Boxplots presents the ranks, those are measured using macro-F1 over
the test dataset. Gray boxplots represent the selection techniques from the state-of-
the-art, Novelty Search (nvs) and Angle-Driven Selection (ads). The average rank, or
time per sample, sorts classifiers, and it appears on the left. b) Statistical comparison
(Wilcoxon signed-rank test) of the different selection schemes combinations against
state-of-the-art selection techniques based on macro-F1. Black cells represent that the
pair of schemes are statistically different with a 95% confidence. Source: Own elabora-
tion.
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Figure 4.10: Comparison of the different selection schemes combinations and state-of-the-art selection schemes based on macro-F1
average rank and the time, in seconds, required by EvoDAG’s training phase. The time is presented in seconds, and it is the average time
per sample. Source: Own elaboration.
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4.6 Comparison of EvoDAG and State-of-the-Art Classi-

fiers

After analyzing the performance of the different selection schemes, it is the moment to

compare EvoDAG against state-of-the-art classifiers. We chose EvoDAG only with the

combination of the selection schemes: acc-rnd, rnd-rnd, fit-fit, ads-rnd, nvs-rnd. acc-

rnd, because it is the heuristic that gives better results, rnd-rnd they are the simplest

schemes and they proportionate good results, fit-fit because it uses the traditional se-

lection schemes based on fitness, and finally, ads-rnd and nvs-rnd because they are

the selection schemes of the state of the art. We decided to compare EvoDAG against

sixteen classifiers of the scikit-learn python library [80], all of them using their default

parameters. Specifically, these classifiers are Perceptron, MLPClassifier, BernoulliNB,

GaussianNB, KNeighborsClassifier, NearestCentroid, LogisticRegression, LinearSVC, SVC,

SGDClassifier, PassiveAggressiveClassifier, DecisionTreeClassifier, ExtraTreesClassifier,

RandomForestClassifier, AdaBoostClassifier and GradientBoostingClassifier. It is also

included in the comparison two auto-machine learning libraries: autosklearn [23] and

TPOT [76]. It is important to mention that TPOT (see Section 2.4) is a Genetic Program-

ming tool for automatically constructing and optimizing machine learning pipelines

using 14 preprocessors, 5 feature selectors, and 11 classifiers; all these techniques im-

plemented in scikit-learn.

Figure 4.11 shows the comparison of classifiers based on macro-F1 ranks. The

best classifier, based on the results of these experiments, is TPOT, followed by EvoDAG

acc-rnd, autosklearn, and EvoDAG rnd-rnd. It can be seen that the use of our pro-

posed selection heuristic based on accuracy and negative random selection improves

the performance of EvoDAG and positioned it into second place. EvoDAG performs

better than the scikit-learn classifiers, and it is competitive with auto-machine learn-

ing libraries.

For validating the results, we use the statistical Wilcoxon signed-rank test [102],
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Figure 4.11: Comparison of EvoDAG against state-of-the-art classifiers based on
macro-F1 rank. The average rank sorts classifiers, and the ranks values are on the left.
The blue boxplots represent EvoDAG systems. Source: Own elaboration.
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and the p-values were adjusted with the Holm-Bonferroni method [44] to consider

multiple comparisons. Macro-F1 values were used for the statistical test. TPOT was

found statistically better than Logistic Regression, KNeighborsClassifier, NearestCen-

troid, AdaBoostClassifier, SVC, Linear SVC, GaussianNB, BernoulliNB, PassiveAggres-

siveClassifier, Perceptron, SGDClassifier. Nevertheless, there were not found statisti-

cal differences between TPOT and EvoDAG. Figure 4.12 shows the results of Wilcoxon

signed-rank test [102] by pairs of classifiers. It can be seen that the results of TPOT

are statistically different from the ones obtained with EvoDAG fit-fit, the classical se-

lection schemes, EvoDAG ads-rnd, and EvoDAG nvs-rnd, the ones of the state-of-the-

art. However, no statistical differences were found between TPOT and EvoDAG acc-rnd

or EvoDAG rnd-rnd. It confirms that our proposed selection schemes statistically im-

prove the performance of EvoDAG.

Figure 4.12: Statistical comparison (Wilcoxon test) of the different classifiers based on
macro-F1. Black cells represent that the pair of schemes are statistically different with
a 95% confidence. Source: Own elaboration.

The classifiers’ comparison based on the time that they spend learning the model
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is presented in Figure 4.13. It can be seen that scikit-learn classifiers are the fasters;

most of them spend from 0.007 to 0.009 seconds per sample. EvoDAG, with the dif-

ferent selection schemes, spends more time than scikit-learn classifiers in the learning

phase. It spends, on average, from 0.5 to 5 seconds per sample. However, EvoDAG is

considerably faster than the auto-machine learning libraries, autosklearn and TPOT,

that consume on average 11.5 and 57.68 seconds, respectively, in the learning phase.

Figure 4.13: Comparison of EvoDAG against state-of-the-art classifiers based on the
time required by the classifiers’ training phase. The time is presented in seconds, and
it is the average time per sample. The average time sorts classifiers, and those values
are on the left. The blue boxplots represent EvoDAG systems. Source: Own elaboration.

Once more time, an analysis in two dimensions for comparing the different

classifiers based on performance (macro-F1 average rank) and time (seconds per sam-

ple) was performed (see Figure 4.14). Remembering, the closest is the classifier to the

origin, the better it is in terms of performance and time. We can observe that the clas-

sifiers in the Pareto frontier are TPOT, EvoDAG acc-rnd, EvoDAG rnd-rnd, GB, ET, and

DT. The interpretation of this is as follows. If you want a good performance and you do

not care about the time-consuming in the training phase, choose TPOT. If you want to
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have results very fast with good performance, but not the best performance, use Gradi-

ent Boosting Classifier. On the other hand, if you wish to a considerable performance

at a reasonable time, use EvoDAG acc-rnd.
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Figure 4.14: Comparison of EvoDAG with state-of-the-art classifiers based on macro-F1 and the time required by the classifiers’ training
phase. The time is presented in seconds, and it is the average time per sample. The classifiers are: EvoDAG acc-rnd, EvoDAG rnd-rnd,
EvoDAG fit-fit, tpot, autosklearn, Perceptron (PER), MLPClassifier (MLP), BernoulliNB (NBB), GaussianNB (NB), KNeighborsClassifier
(KN), NearestCentroid (NC), LogisticRegression (LR), LinearSVC (LSVC), SVC, SGDClassifier (SDG), PassiveAggressiveClassifier (PA), De-
cisionTreeClassifier (DT), ExtraTreesClassifier (ET), RandomForestClassifier (RF), AdaBoostClassifier (AB) and GradientBoostingClassi-
fier (GB). Source: Own elaboration.
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4.7 Visualization Map for Classifiers and Datasets

In this section, we use our visualization methodology called Liking Product Landscape

(LPL) [87]. It was proposed as a visualization tool within the Sensory Analysis area. Its

original goal is to understand the grades that consumers assign to products, with the

idea of making comparisons among different products or for improving one based on

the perception of consumers. However, in this section, we use this same methodology

for analyzing the results of different techniques to solve classification problems. It can

be helpful to visualize if some techniques produce similar results and how they per-

form in different datasets.

Figures 4.15 and 4.16 show two visualization maps for comparing the perfor-

mance of different classifiers, in terms of macro-F1 ranks, based on the datasets. Fig-

ure 4.15 presents the results of the different combinations of selection schemes and

Figure 4.16 the results of the comparison of EvoDAG against several state-of-the-art

classifiers. The circles in the maps correspond to the classifiers, and in all maps, the

position is the same. In the center of the figures, a map with the names of classifiers, or

selection schemes combination, can be observed. Colors represent the performance;

in this case, in terms of macro-F1 average rank, the bluer, the highest the classifier per-

formance, in the opposite, the redder, the worse performance. Color outside points

represents the tendency of the area. In the visualization map, techniques that have

similar results are plotting together, whereas techniques that have different results are

plotted apart. Lines in the center map represent the classifiers’ distribution. They are

useful for identifying groups. For example, in Figure 4.16, it can be detected 3 main

groups of classifiers. One image for each dataset is showed intending to analyze the

performance of classifiers by datasets. In this sense, images with the same pattern rep-

resent that the datasets are similar in terms of the results of classifiers.
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The performance of the different combinations of selection schemes for parent

and negative selection based on macro-F1 rank is shown on Figure 4.15. Based on the

colors of the center map, the best combination of selection schemes is acc-rnd–rnd,

followed by acc-fit–fit. Based on the position of selection techniques’ combinations,

the performance of acc-rnd–rnd is similar to acc-fit–fit, sim-fit–rnd, and prs-fit–rnd.

On the button left, we can see all the versions of ads, in particular, the worst combina-

tions are ads-rnd–rnd* and ads-fit–fit. Also, we can see that heuristics (acc, sim, prs)

results are similar, while, fit-fit and rnd-rnd appear apart. The dataset that was the

easiest to solve is banknote, because all versions of EvoDAG got good results (all are

in blue). It is followed by ml-prove, fertility, iris, and wine. For the pattern and colors

of images, we can see that ads and nvs got good results on the datasets: ad, banknote,

ml-prove, and musk1. All of those datasets are binary classification problems. Th com-

bination of the classical tournaments based on fitness, fit-fit, is marked with a start, we

can see that it got good results on the datasets aps-failure, banknote, dota2, iris, musk2,

sensorless, tae, and wine, all of those datasets have a small number of classes, except

sensorless that has 11 classes.
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Figure 4.15: Comparison of different selection schemes for parent and negative selection based on macro-F1 rank using LPL as a visual-
ization map. Source: Own elaboration.

126



Figure 4.16 shows the comparison of EvoDAG against state-of-the-art classi-

fiers based on macro-F1 rank using the visualization map. Three main groups can be

detected: (1) the different versions of EvoDAG; (2) the classifiers based on decision

trees: RandomForestClassifier, ExtraTreesClassifier, DecisionTreeClassifier, and Gradi-

entBoostingClassifier; and (3) the scikit-learn classifiers. For the colors in the images,

it can be seen that the classifiers in the bottom are the ones with the best performance,

groups 1, 2, and the auto-machine learning tools: TPOT and autosklearn. Specifically,

group 2 got better results in the datasets ad, krkopt, letter-recognition, and fertility.

TPOT, the tool with the highest macro-F1 average rank, generally obtained excellent

results in most of the datasets. However, for his color red in the dataset’s images, we

can detect that it could not solve the following datasets satisfactorily: fertility and Indi-

anLiverPatient.

Most datasets (ad, adult, car, optdigits, magic04, musk2, page-blocks, parkin-

sons, pendigits, segmentation, sensorless, tae, wine, and, yeast) have the same color

pattern. It means that the classifiers obtained approximately the same results on all

those datasets. However, some datasets differ from the rest. For example, banknote,

fertility, and iris, obtained good results using the classifiers SVC and Nearest Centroid.

127



Figure 4.16: Comparison of EvoDAG vs state-of-the-art classifiers based on macro-F1 rank using LPL as a visualization map. The clas-
sifiers are: EvoDAG acc-rnd, EvoDAG rnd-rnd, EvoDAG fit-fit, tpot, autosklearn, Perceptron (PER), MLPClassifier (MLP), BernoulliNB
(NBB), GaussianNB (NB), KNeighborsClassifier (KN), NearestCentroid (NC), LogisticRegression (LR), LinearSVC (LSVC), SVC, SGDClas-
sifier (SDG), PassiveAggressiveClassifier (PA), DecisionTreeClassifier (DT), ExtraTreesClassifier (ET), RandomForestClassifier (RF), Ad-
aBoostClassifier (AB) and GradientBoostingClassifier (GB). Source: Own elaboration.
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4.8 Summary

In this chapter, we presented the results of the different selection schemes for parents

and negative selection in EvoDAG, including our proposed selection heuristics. For

parent selection we tested: tournament selection based on fitness (fit), random selec-

tion (rnd), tournament selection based on the absolute of the cosine similarity (sim),

and, tournament selection based on the absolute of the Pearson’s correlation coeffi-

cient (pearson). Being our proposed heuristics sim, prs, and acc. For negative se-

lection, we tested: negative tournament selection based on fitness (fit), and random

selection (rnd). Notation: the technique for parent selection is followed by the sym-

bol “-”, and then comes the abbreviation of the negative selection scheme. Based on

macro-F1 ranks, acc-rnd got the best results, followed by acc-fit and rnd-rnd. The tech-

niques acc-rnd and fit-fit were found statistically different, which means that the use

of our heuristic for parent selection based on accuracy and negative selection was sta-

tistically better than the use of the classical selection schemes based on fitness. On

the other hand, rnd-rnd got better results than fit-fit, but they were not statistically dif-

ferent. Besides, it was found that the application of the heuristics to all functions with

more than one argument (
∑

,
∏

, max, min, hypot, NB, MN, and NC) got generally worse

results than applying them only to the functions that they were designed for (
∑

, Naive

Bayes and Nearest Centroid). The proposed selection heuristics and classical selection

schemes were compared with the state-of-the-art selection schemes Angle-Driven Se-

lection (ads) [15] and Novelty Search (nvs) [62]. Both techniques were implemented

in EvoDAG. Based on the experiments, our proposed heuristics and random selection

got better results than ads and nvs. Finally, we compared EvoDAG, with the use of the

proposed heuristics, against 16 state-of-the-art classifiers from scikit-learn plus two

auto-machine learning libraries: TPOT and autosklearn. The technique that got the

best results was TPOT, followed by EvoDAG acc-rnd, autosklearn, and EvoDAG rnd-

rnd. However, there were not found statistical differences between TPOT and EvoDAG

acc-rnd or EvoDAG acc-rnd. On the other hand, TPOT and EvoDAG fit-fit were found

statistically different. Then, we can interpret that the use of our proposed heuristic

based on accuracy for parent selection plus random negative selection statistically im-
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proves EvoDAG.
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Conclusions

This dissertation has proposed three selection heuristics for parent selection in GP that

use functions’ properties and individuals’ semantics. They are described as follows.

First, tournament selection based on cosine similarity (sim) aims to promote the se-

lection of parents whose semantics’ vectors ideally have rectangle angles. Tournament

selection based on Pearson’s correlation coefficient (prs) aims to promote the selection of

parents whose semantics’ vectors are uncorrelated. Finally, tournament selection based

on the accuracy (acc) tries to select parents whose predictions are different, and this is

measured with the accuracy score. All of those heuristics were inspired in the prop-

erties of the function
∑

, and the classifiers Naive Bayes and Nearest Centroid (more

details in Chapter 3). To the best of our knowledge, this is the first time in Genetic Pro-

gramming that functions’ properties are taking into account to design methodologies

for parent selection.

We performed a comparison of our proposed heuristics against the classical

parent selection technique, tournament selection based on fitness, and also with ran-

dom parent selection. In the case of the last one, it is the most straightforward, and

we wanted to analyze its behavior. For negative selection, we tested the use of neg-

ative tournament selection based on fitness and random selection. Besides, we also

tasted two state-of-the-art selection schemes, Novelty Search and Angle-Driven selec-

tion (more details in Section 4.6). We use EvoDAG, a GP system tailored to solve su-

pervised learning problems, to implement and test the different selection techniques

(more details in Section 1.4).

The performance of EvoDAG with the different selection schemes was analyzed

on thirty classification problems taken from the UCI repository. The datasets were het-

erogeneous in terms of the number of samples, variables, and some of them are bal-

anced, and others imbalanced. The results showed that the use of our heuristics for
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parent selection (sim, prs, and acc) outperformed EvoDAG using the classical tourna-

ment selection based on fitness. The heuristic that obtained the best performance was

accuracy combined with random negative selection. Besides, it was statistically better

than tournament selection based on fitness. It is interesting to note that random se-

lection was competitive, achieving good places in the rank when several combinations

for parent and negative selection were studied. Also, our heuristics presented better

performance than selection techniques from the state-of-the-art, Novelty Search and

Angle-Driven Selection (more details in Section 4.6).

Besides, EvoDAG, with the use of the proposed heuristics, was compared against

18 state-of-the-art classifiers, 16 of them from the scikit-learn python library, and two

auto-machine learning algorithms. We confirmed in this experiment that the use of

EvoDAG acc-rnd, using accuracy for parent selection and the random negative se-

lection, statistically outperformed EvoDAG fit-fit, using classical selection techniques

based on fitness. EvoDAG acc-rnd got the 2nd place in the comparison, and EvoDAG

fit-fit appeared on the 7-th position. The results showed that EvoDAG acc-rnd outper-

formed the scikit-learn classifiers and was competitive against auto-machine learning

algorithms. Based on the average rank (measured with macro-F1), the best system was

TPOT, which is an auto-machine learning algorithm, the second was EvoDAG acc-rnd,

the third position was autosklearn, and the fourth position was EvoDAG rnd-rnd, us-

ing random selection for parent and negative selection. Interestingly, the performance

of EvoDAG acc-rnd was statistically equivalent to the two auto-machine learning al-

gorithms considered in this comparison. The time required in the training phase of

the classifiers was also included in the comparison. The auto-machine learning algo-

rithms were the slowest ones, and the scikit-learn classifiers the fasters. Nonetheless,

the difference in time was considerable; TPOT used, on average, more than 57 seconds

per sample, autosklearn 11, and EvoDAG less than 5 seconds per instance (more details

in Section 4.6).
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Discussion

In Chapter 2, we showed a lot of recent documents that have used semantics for im-

proving the performance of GP. Most of them designed crossover and mutation op-

erators. Focus on selection; most of the documents are related to the comparison of

individuals’ semantics to select parents whose semantics are different. However, to the

best of our knowledge, this is the first time that functions’ properties are used for guid-

ing the parent selection. For example, the state-of-the-art selection schemes, Angle-

Driven Selection [15] and the semantic tournament selection for GP based on statis-

tical analysis of error vectors [18], are applied without take care of functions. In fact,

based on our results, we can observed that the proposed selection heuristics work bet-

ter when they were applied only to the functions that they were designed for (
∑

, NB,

MN, and NC) than using them in all functions with more than one argument (
∑

,
∏

,

max, min, hypot, NB, MN, and NC), this indicates that the functions’ properties are an

important factor for the selection of arguments in GP.

Recently, it was observed that the use of angles between individuals’ seman-

tics in the semantic space is important for selecting individuals. The last year, 2019,

two selection schemes that use angle for guiding the selection of individuals were pro-

posed, Angle-Driven Selection (ADS) [15] and Nested Alignment Genetic Programming

(NAGP) [98]. Our proposal, specifically, tournament selection based on cosine simi-

larity (sim), is related with those techniques. The comparison is presented in Table

4.8. Besides implementing the proposed selection heuristics, we implemented Angle-

Driven Selection (ads) (see Section 4.6) in EvoDAG, the results were that our proposed

heuristics outperformed ads. Also, the proposal of ADS establishes that the individu-

als in the tournaments are first selected using a tournament selection based on fitness.

However, we proved that it was better when the individuals in the tournament were

randomly selected from the population (see Figure 4.9).

Based on our results, we realized that random selection in the two stages, parent
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Table 4.8: Selection techniques that recently use the angle between individuals’ seman-
tics

Angle-Driven Selection (ads) Selection heuristics (sim, prs, and acc)
Nested Alignment Genetic Program-
ming (NAGP)

GP system GSGP (see Section 2.2). EvoDAG (see Section 1.4). NAGP (see Section 2.3).

Objective

ADS was designed for improving the
crossover operator of Geometric Se-
mantic Genetic Programming. The
idea is to maximize the angle γr be-
tween the relative semantics of indi-
viduals.

Our selection heuristics aim to select
parents based on functions’ properties
and individuals’ semantics, they are tai-
lored to the function

∑
and the classi-

fiers Naive Bayes and Nearest Centroid.
The idea is to select individuals whose
semantics’ vectors have rectangle angles
(sim), or are uncorrelated (prs), or have
different behaviors (acc).

In the system NAGP, the objective is
to find a pair of individuals I1 and I2
whose angle between ~I1 −~t and ~I2 −~t
is 0. The idea behind this is to accom-
plish the property of Optimally Aligned
Individuals, introduced in [85]. It says
that two individuals I1 and I2 are op-
timally aligned if it exists a constant
k such that ~I1 −~t = k(~I2 −~t ). This is
because finding them, it is possible to
calculate the individual whose seman-
tics’ vector is equal to the target vector
in the semantics space.

Procedure

Given the parents’ semantics repre-
sented with the vectors ~P1 and ~P2 and
the target semantics t , ADS aims to
maximize the value of

γr = arccos

(
(~t − ~P1) · (~t − ~P2)∥∥~t − ~P1

∥∥∥∥~t − ~P2
∥∥

)

More details in Section 4.6.

Given the parents’ semantics repre-
sented with the vectors ~P1 and ~P2 and
the target semantics t , our heuristics
tries to minimize the following values:

si m(~P1, ~P2) =
∣∣~P1 · ~P2

∣∣∥∥~P1
∥∥∥∥~P2

∥∥
pr s(~P1, ~P2) =

∣∣(~P1 − P̄1) · (~P2 − ~P2)
∣∣∥∥~P1 − P̄1

∥∥∥∥~P2 − P̄2
∥∥

acc(~P1, ~P2) = 1

n

∑
i
δ(P1i == P2i )

More details in Sections 3.2.3 and 3.2.4.

The objective is that

arccos

(
~I1 −~t

||~I1 −~t ||
·
~I2 −~t

||~I2 −~t ||

)
= 0

More details in Section 2.3

Application Multivariate symbolic regression 30 classification problems UCI regression problems

Results

In general, the system ADGSGP has
a faster convergence rate than tradi-
tionally GP and GSGP, a good inter-
pret ability, and requires less computa-
tional effort.

Based on the experiments (see Chapter
4), the combination of selection tech-
niques acc-rnd has significantly bet-
ter results than selection based on fit-
ness (fit-fit), and the selection of par-
ents based on Novelty Search or Angle-
Driven selection.

NAGP outperforms GSGP and GSGP-
LS on four complex real-life applica-
tions. Its models are not only more ef-
fective but also significantly smaller.
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and negative selection, outperformed the classical implementation of EvoDAG, where

individuals are selected based on fitness. Random selection (rnd-rnd) achieved good

places in all the comparisons (see Figures 4.1, 4.9, and 4.11). It was surprising because,

in this case, the evolution process is not guided by the fitness of individuals; instead

of that, it is random. However, we assume that random selection works well because

it promotes population diversity, also, in EvoDAG after selecting the function and its

arguments, or parents, a set of parameters θ are estimated with ordinary least squares

(OLS) using the target and the individual’ semantics. The aim is minimizing the dif-

ference between the individual’s semantics and the target semantics (see Section 1.4).

Another technique that is quite similar to random selection is Novelty Search (NS) [62],

which was used for evolving classifiers in [72]. The proposal of NS is abandoning ob-

jectives in evolutionary computation, the idea is to replace the fitness function by the

novelty of individuals. Table 4.9 shows the comparison between random selection and

novelty search. Based on our results (see Section 4.6), random selection is better than

novelty search. We assume that the problem of NS is that it searches for individuals

that are different from the rest of individuals in the population, and when the func-

tions’ arguments are selected, individuals are different from the majority of individuals

in the population but maybe among them are similar.

Table 4.9: Comparison of Novelty Search and Random Selection

Novelty Search (nvs) Random selection (rnd)

Objective
It tries to select individuals that are different from the
rest of individuals in the population.

It randomly selects individuals from the population.

Procedure

Novelty Search selects an individual T maximizing:

log(φ(T )) =∑
j

log

(
1

P j (T j )+ε

)

where T represents the semantics of the individual, and
P a probability function. More details in Section 4.6.

It is effortless, it only selects individuals randomly from
the population.

GP system
Originally, it was implemented in M4GP [72] (see Sec-
tion 2.4), but we also implemented it in EvoDAG.

EvoDAG (see Section 1.4).

Application 11 classification problems 30 classification problems

Results

In terms of performance, results show that all NS vari-
ants achieve competitive results relative to the standard
approach in GP. Moreover, NS variants got smaller pro-
gram trees.

Based on the experiments (see Chapter 4), the combina-
tion of random selection for parent and negative selec-
tion (rnd-rnd) was better than the use of novelty search
for parent selection and negative random selection (nvs-
rnd).

In 2014, Ingalalli et al. affirmed that GP was never regarded as a good method
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to perform multi-class classification [46]. Nevertheless recently, Genetic Programming

classifiers whose results are competitive with state-of-the-art classifiers have been pro-

posed: EvoDAG [36] in 2016, TPOT [76] in 2016, and M4GP [60] in 2019. Table 4.10

shows a comparison of those GP classifiers. It can be seen that TPOT, M4GP, and EvoDAG,

have different approaches, and we want to stand out that EvoDAG evolves full classi-

fiers combining elements from the function and terminal sets, as classical GP method-

ologies. On the other hand, M4GP uses GP in the first phase of the process for trans-

forming the data space, and, TPOT combines classifiers, preprocessors, and feature

selectors from scikit-learn.

Table 4.10: Comparison of recent GP classifiers

M4GP TPOT EvoDAG acc-rnd

Description

The main idea is to transform the origi-
nal space into another one using func-
tions evolved with GP, then, a centroid
is calculated for each class, and the
vectors are assigned to the class that
corresponds to the nearest centroid
using the Mahalanobis distance. In
that case, GP is used in the first phase
of the classifier, the pre-processing
step (see Section 2.4).

It is an auto-machine learning approach
that automatically constructs and opti-
mizes machine learning pipelines using
GP. It searches the best combination of
14 preprocessors, five feature selectors,
and 11 classifiers, all these techniques
implemented in scikit-learn [80].

It constructs a full classifier combining
elements from a function set and ter-
minal set (see Section 1.4).

Results
M4GP produces better results that
classical classifiers as LR, RF, MLP, KNN
and RF but it is not better than TPOT.

TPOT is a powerful technique for op-
timizing machine learning pipelines,
however it takes a lot of time.

EvoDAG outperformed 18 scikit-learn
classifiers, and its results are statisti-
cally similar to TPOT.

Conclusions

Based on our results and observations, we provide the following conclusions:

• Functions’ properties are useful for designing parent selection techniques in GP.

In this dissertation we used the properties of function
∑

and the classifiers Naive

Bayes and Nearest Centroid. To the best of our knowledge, this is the first time

that functions’ properties were used for guiding parent selection in GP.

• The proposed heuristics for parent selection; tournament selection based on co-

sine similarity (sim), tournament selection based on Pearson’s correlation coef-

ficient (prs), and, tournament selection based on the accuracy (acc); improved

the performance of EvoDAG. In fact, the selection heuristic based on accuracy
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obtained statistically better results than parent selection based on fitness.

• When random selection was used for parent and negative selection, it outper-

formed the classical selection schemes based on fitness. Besides, it is more straight-

forward. We assumed that it is because random selection promotes population

diversity. Also, when EvoDAG optimizes the functions’ parameters θ (see Section

1.4), it uses the target semantics for improving the offspring.

• The use of the selection heuristic based on accuracy for parent selection, and

random negative selection, made EvoDAG competitive with state-of-the-art clas-

sifiers and auto-machine learning techniques.

Future Work

As future work, it could be interesting to:

• Implement and test the selection heuristics on other GP implementations, as Ge-

ometric Semantic Genetic Programming (GSGP) [67], Angle-Driven Geometric

Semantic Genetic Programming (ADGSGP) [15], or, M4GP [60].

• Propose new heuristics for regression problems and for other functions.
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