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This paper describes a novel approach to learning term-weighting schemes (TWSs) in the context of text
classification. In text mining a TWS determines the way in which documents will be represented in a vec-
tor space model, before applying a classifier. Whereas acceptable performance has been obtained with
standard TWSs (e.g., Boolean and term-frequency schemes), the definition of TWSs has been traditionally
an art. Further, it is still a difficult task to determine what is the best TWS for a particular problem and it
is not clear yet, whether better schemes, than those currently available, can be generated by combining
known TWS. We propose in this article a genetic program that aims at learning effective TWSs that can
improve the performance of current schemes in text classification. The genetic program learns how to
combine a set of basic units to give rise to discriminative TWSs. We report an extensive experimental
study comprising data sets from thematic and non-thematic text classification as well as from image clas-
sification. Our study shows the validity of the proposed method; in fact, we show that TWSs learned with
the genetic program outperform traditional schemes and other TWSs proposed in recent works. Further,
we show that TWSs learned from a specific domain can be effectively used for other tasks.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Text classification (TC) is the task of associating documents
with predefined categories that are related to their content. TC is
an important and active research field because of the large number
of digital documents available and the consequent need to orga-
nize them. The TC problem has been approached with pattern clas-
sification methods, where documents are represented as numerical
vectors and standard classifiers (e.g., naïve Bayes and support vec-
tor machines) are applied [35]. This type of representation is
known as the vector space model (VSM) [34]. Under the VSM one
assumes a document is a point in a N-dimensional space and docu-
ments that are closer in that space are similar to each other [41].
Among the different instances of the VSM, perhaps the most used
model is the bag-of-words (BOW) representation. In the BOW it is
assumed that the content of a document can be determined by the
(orderless) set of terms1 it contains. Documents are represented as
points in the vocabulary space, that is, a document is represented
by a numerical vector of length equal to the number of different
terms in the vocabulary (the set of all different terms in the docu-
ment collection). The elements of the vector specify how important
the corresponding terms are for describing the semantics or the con-
tent of the document. BOW is the most used document representa-
tion in both TC and information retrieval. In fact, the BOW
representation has been successfully adopted for processing other
media besides text, including, images [7], videos [37], speech signals
[38], and time series [43] among others.

A crucial component of TC systems using the BOW representa-
tion is the so called term-weighting scheme (TWS), which is in
charge of determining how relevant a term is for describing the
content of a document [20,4,26,11]. Traditional TWSs are term-fre-
quency (TF), where the importance of a term in a document is
given by its frequency of occurrence in the document; Boolean
(B), where the importance of a term in a document is either 1,
when the term appears in the document or 0, when the term does
not appear; and term-frequency inverse-document-frequency (TF-
IDF), where the importance of a term for a document is determined
by its occurrence frequency times the inverse frequency of the
term across the corpus (i.e., frequent terms in the corpus, as prepo-
sitions and articles, receive a low weight). Although, TC is a widely
studied topic with very important developments in the last two
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decades [35,20], it is somewhat surprising that little attention has
been paid to the development of new TWSs to better represent the
content of documents for TC. In fact, it is quite common in TC sys-
tems that researchers use one or two common TWSs (e.g., B, TF or
TF-IDF) and put more effort in other processes, like feature selec-
tion [21,44], or the learning process itself [1,2,14]. Although all of
the phases in TC are equally important, we think that by putting
more emphasis on defining or learning effective TWSs we can
achieve substantial improvements in TC performance.

This paper introduces a novel approach to learning TWS for TC
tasks. A genetic program is proposed in which a set of primitives
and basic TWSs are combined through arithmetic operators in
order to generate alternative schemes that can improve the perfor-
mance of a classifier. Genetic programming is an evolutionary algo-
rithm in which a population of programs is evolved [27], where
programs encode solutions to complex problems, in this work pro-
grams encode TWSs. The underlying hypothesis of our proposed
method is that an evolutionary algorithm can learn TWSs of
comparable or even better performance than those proposed so
far in the literature.

Traditional TWSs combine term-importance and term-docu-
ment-importance factors to generate TWSs. For instance in TF-
IDF, TF and IDF are term-document-importance and term-impor-
tance factors, respectively. Term-document weights are referred
as local factors, because they account for the occurrence of a term
in a document (locally). On the other hand, term-relevance weights
are considered global factors, as they account for the importance of
a term across the corpus (globally). It is noteworthy that the actual
factors that define a TWS and the combination strategy itself have
been determined manually. Herein we explore the suitability of
learning these TWSs automatically, by providing a genetic program
with a pool of TWSs’ building blocks with the goal of evolving a
TWS that maximizes the classification performance for a TC classi-
fier. We report experimental results in many TC collections that
comprise both: thematic and non-thematic TC problems.
Throughout extensive experimentation we show that the proposed
approach is very competitive, learning very effective TWSs that
outperform most of the schemes proposed so far. We evaluate
the performance of the proposed approach under different settings
and analyze the characteristics of the learned TWSs. Additionally,
we evaluate the generalization capabilities of the learned TWSs
and even show that a TWS learned from text can be used to effec-
tively represent images under the BOW formulation.

The rest of this document is organized as follows. Next section
formally introduces the TC task and describes common TWSs.
Section 3 reviews related work on TWSs. Section 4 introduces the
proposed method. Section 5 describes the experimental settings
adopted in this work and reports results of experiments that aim
at evaluating different aspects of the proposed approach.
Section 6 presents the conclusions derived from this paper and
outlines future research directions.
2. Text classification with the Bag of words

The most studied TC problem is the so called thematic TC (or
simply text categorization) [35], which means that classes are
associated to different themes or topics (e.g., classifying news into
‘‘Sports’’ vs. ‘‘Politics’’ categories). In this problem, the sole occur-
rence of certain terms may be enough to determine the topic of a
document; for example, the occurrence of words/terms
‘‘Basketball’’, ‘‘Goal’’, ‘‘Ball’’, and ‘‘Football’’ in a document is strong
evidence that the document is about ‘‘Sports’’. Of course, there are
more complex scenarios for thematic TC, for example, distin-
guishing documents about sports news into the categories:
‘‘Soccer’’ vs. ‘‘NFL’’. Non-thematic TC, on the other hand, deals with
the problem of associating documents with labels that are not
related to their topics. Non-thematic TC includes the problems
of authorship attribution [39], opinion mining and sentiment
analysis [32], authorship verification [25], author profiling [24],
among several others [33,23]. In all of these problems, the the-
matic content is of no interest, nevertheless, it is common to
adopt standard TWSs for representing documents in non-
thematic TC as well (e.g., BOW using character n-grams or
part-of-speech tags [39]).

It is noteworthy that the BOW representation has even tres-
passed the boundaries of the text media. Nowadays, images [7],
videos [37], audio [38], and other types of data [43] are repre-
sented throughout analogies to the BOW. In non-textual data, a
codebook is first defined/learned and then the straight BOW
formulation is adopted. In image classification, for example, visual
descriptors extracted from images are clustered and the centers of
the clusters are considered as visual words [7,45]. Images are then
represented by numerical vectors (i.e., a VSM) that indicate the
relevance of visual words for representing the images.
Interestingly, in other media than text (e.g., video, images) it is
standard to use only the TF TWS, hence motivating the study on
the effectiveness of alternative TWSs in non-textual tasks.
Accordingly, in this work we also perform preliminary experiments
on learning TWSs for a standard computer vision problem [19].

TC is a problem that has been approached mostly as a super-
vised learning task, where the goal is to learn a model capable of
associating documents to categories [35,20,1]. Consider a data set
of labeled documents D ¼ ðxi; yiÞf1;...;Ng with N pairs of documents
(xi) and their classes (yi) associated to a TC problem; where we
assume xi 2 Rp (i.e., a VSM) and yi 2 C ¼ f1; . . . Kg, for a problem
with K-classes. The goal of TC is to learn a function f : Rp ! C from
D that can be used to make predictions for documents with
unknown labels, the so called test set: T ¼ fxT

1; . . . ;xT
Mg. Under

the BOW formulation, the dimensionality of documents’ represen-
tation, p, is defined as p ¼ jV j, where V is the vocabulary (i.e., the
set all the different terms/words that appear in a corpus). Hence,
each document di is represented by a numerical vector
xi ¼ hxi;1 . . . ; xi;jV ji, where each element xi;j; j ¼ 1; . . . ; jV j, of xi indi-
cates how relevant word tj is for describing the content of di, and
where the value of xi;j is determined by the TWS.

Many TWSs have been proposed so far, including unsupervised
[35,34,20] and supervised schemes [11,26], see Section 3.
Unsupervised TWSs are the most used ones, they were firstly pro-
posed for information retrieval tasks and latter adopted for TC
[35,34]. Unsupervised schemes rely on term frequency statistics
and measurements that do not take into account any label infor-
mation. For instance, under the Boolean (B) scheme xi;j ¼ 1 iff term
tj appears in document i and 0 otherwise; while in the term-fre-
quency (TF) scheme, xi;j ¼ #ðdi; tjÞ, where #ðdi; tjÞ accounts for
the times term tj appears in document di. On the other hand, super-
vised TWSs aim at incorporating discriminative information into
the representation of documents [11]. For example in the TF-IG
scheme, xi;j ¼ #ðdi; tjÞ � IGðtjÞ, is the product of the TF TWS for term
tj and document di (a local factor) with the information gain of
term tj (IGðtjÞ, global factor). In this way, the discrimination power
of each term is taken into account for the document representa-
tion; in this case through the information gain value [44]. It is
important to emphasize that most TWSs combine information
from both term-importance (global) and term-document-impor-
tance (local) factors (see Section 3), for instance, in the TF-IG
scheme, IG is a term-importance factor, whereas TF is a term-docu-
ment-importance factor.

Although acceptable performance has been reported with exist-
ing TWS, it is still an art determining the adequate TWS for a par-
ticular data set; as a result, mostly unsupervised TWSs (e.g., B, TF
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and TF-IDF) have been adopted for TC systems [20,2]. A first
hypothesis of this work is that different TWSs can achieve better
performance on different TC tasks (e.g., thematic TC vs. non-the-
matic TC); in fact, we claim that within a same domain (e.g., news
classification) different TWSs are required to obtain better classifi-
cation performance on different data sets. On the other hand, we
notice that TWSs have been defined as combinations of term-docu-
ment weighting factors (which can be seen as other TWSs, e.g., TF)
and term-relevance measurements (e.g., IDF or IG), where the def-
inition of TWSs has been done by relying on the expertise of users.
Our second hypothesis is that the definition of new TWSs can be
automated. With the aim of verifying both hypotheses, this paper
introduces a genetic program that learns how to combine term-
document-importance and term-relevance factors to generate
effective TWSs for diverse TC tasks.
2 Recall a local factor incorporates term information (locally) available in a
document, whereas a global term factor takes into account term statistics estimated
across the whole corpus. In information retrieval it is also common to normalize the
vectors representing a document to reduce the impact of the length of a document.
3. Related work

As previously mentioned, in TC it is rather common to use
unsupervised TWSs to represent documents, specifically B, TF and
TF-IDF schemes are very popular (see Table 1). Their popularity
derives from the fact that these schemes have proved to be very
effective in information retrieval [34,5,41] and in many TC prob-
lems as well as [35,20,1–3]. Unsupervised TWSs mainly capture
term-document occurrence (e.g., term occurrence frequency, TF)
and term-relevance (e.g., inverse document frequency, IDF) infor-
mation. While acceptable performance has been obtained with
such TWSs in many applications, in TC one has available labeled
documents, and hence, document-label information can also be
exploited to obtain more discriminative TWSs. This observation
was noticed by Debole & Sebastiani and other authors that have
introduced supervised TWSs [11,26].

Supervised TWSs take advantage of labeled data by
incorporating a discriminative term-weighting factor into the
TWSs. In [11] TWSs were defined by combining the unsupervised
TF scheme with the following term-relevance criteria: informa-
tion gain (TF-IG), which measures the reduction of entropy when
using a term as classifier [44]; v2 (TF-CHI), that makes an
independence test regarding a term and the classes [35]; and
gain-ratio (TF-GR) measuring the gain-ratio when using the term
as classifier [11]. The conclusions from [11] were that small
improvements can be obtained with supervised TWSs over
unsupervised ones. Although somewhat disappointing, it is inter-
esting that for some scenarios supervised TWSs were beneficial.
More recently, Lan et al. proposed an alternative supervised
TWS [26], the so called TF-RF scheme. TF-RF combines TF with
a criterion that takes into account the true positives and true
negative rates when using the occurrence of the term as
classifier. In [26] the proposed TF-RF scheme obtained better per-
formance than unsupervised TWSs and even outperformed the
schemes proposed in [11]. In [4] the RF term-relevance factor
was compared with alternative weights, including mutual infor-
mation, odds ratio and v2; in that work RF outperformed the
other term-importance criteria.

Table 1 shows the most common TWSs proposed so far for TC. It
can be observed that TWSs are formed by combining term-docu-
ment (TDR) and term (TR) relevance weights. The selection of what
TDR and TR weights to use rely on researchers choices (and hence
on their biases). It is quite common to use TF as TDR, because
undoubtedly the term-occurrence frequency carries on very
important information: we need a way to know what terms a
document is associated with. However, it is not that clear what
TR weight to use, as there is a wide variety of TR factors that have
been proposed. The goal of TRs is to determine the importance of a
given term, with respect to the documents in a corpus (in the
unsupervised case) or to the classes of the problem (in the super-
vised case). Unsupervised TRs include: global term-frequency,
and inverse document frequency (IDF) TRs. These weights can cap-
ture word importance depending on its global usage across a cor-
pus, however, for TC seems more appealing to use discriminative
TRs as one can take advantage of training labeled data. In this
aspect, there is a wide variety of supervised TRs that have been
proposed, including: mutual information, information gain, odds
ratio, etcetera [3].

The goal of a supervised TR weight is to determine the impor-
tance of a given term with respect to the classes. The simplest,
TR would be to estimate the correlation of term frequencies and
the classes, although any other criterion that accounts for the
association of terms and classes can be helpful as well. It is inter-
esting that although many TRs are available out there, they have
been mostly used for feature selection rather than for building
TWSs for TC. Comprehensive and extensive comparative studies
using supervised TRs for feature selection have been reported
[4,21,44,30]. Although not being conclusive, these studies serve
to identify the most effective TRs weights, such weights are consid-
ered in this study.

To the best of our knowledge, the way we approach the problem
of learning TWSs for TC is novel. Similar approaches based on
genetic programming to learn TWSs have been proposed in
[9,10,8,40,31,17], however, these researchers have focused on the
information retrieval problem, which differs significantly from
TC. Early approaches using genetic programming to improve the
TF-IDF scheme for information retrieval include those from
[40,31,17,18]. More recently, Cummins et al. proposed improved
genetic programs to learn TWSs also for information retrieval
[9,10,8].

Although the work by Cummins et al. is very related to ours,
there are major differences (besides the problem being
approached): Cummins et al. approached the information retrieval
task and defined a TWS as a combination of three factors: local,
global weighting schemes and a normalization factor.2 The authors
designed a genetic program that aimed at learning a TWS by evolv-
ing the local and global schemes separately. Only 11 terminals,
including constants, were considered. Since information retrieval is
an unsupervised task, the authors had to use a whole corpus with
relevance judgements (i.e., a collection of documents with queries
and the set of relevant documents to each query) to learn the
TWS, which, once learned, could be used for other information
retrieval tasks. Hence they require a whole collection of documents
to learn a TWS. On the other hand, the authors learned a TWS sepa-
rately, first a global TWS was evolved fixing a binary local scheme,
then a local scheme was learned by fixing the learned global weight.
Hence, they restrict the search space for the genetic program, which
may limit the TWSs that can be obtained. Also, it is worth noticing
that the focus of the authors of [9,10,8] was on learning a single,
and generic TWS to be used for other information retrieval problems,
hence the authors performed many experiments and reported the
single best solution they found after extensive experimentation.
Herein, we provide an extensive evaluation of the proposed
approach, reporting average performance over many runs and many
data sets. Finally, one should note that the approach from [9,10,8]
required of large populations and numbers of generations (1000
individuals and 500 generations were used), whereas in this work
competitive performance is obtained with only 50 individuals and
50 generations.



Table 1
Common term weighting schemes for TC. In every TWS, xi;j indicates how relevant term tj is for describing the content of document di , under the corresponding TWS. N is the
number of documents in training data set, #ðdi ; tjÞ indicates the frequency of term tj in document di; df ðtjÞ is the number of documents in which term tj occurs, IGðtjÞ is the
information gain of term tj;CHIðtjÞ is the v2 statistic for term tj , and TP; TN are the true positive and true negative rates for term tj (i.e., the number of positive, resp. negative,
documents that contain term tj).

Acronym Name Formula Description Ref.

B Boolean xi;j ¼ 1f#ðti ;djÞ>0g Indicates the prescense/abscense of terms [34]

TF Term-Frequency xi;j ¼ #ðti; djÞ Accounts for the frequency of occurrence of terms [34]
TF-IDF TF – Inverse Document

Frequency
xi;j ¼ #ðti; djÞ � logð N

df ðtjÞÞ An TF scheme that penalizes the frequency of terms across the collection [34]

TF-IG TF – Information Gain xi;j ¼ #ðti; djÞ � IGðtjÞ TF scheme that weights term occurrence by its information gain across the
corpus

[11]

TF-CHI TF – Chi-square xi;j ¼ #ðti; djÞ � CHIðtjÞ TF scheme that weights term occurrence by its v2 statistic [11]
TF-RF TF – Relevance Frequency xi;j ¼ #ðti; djÞ � logð2þ TP

maxð1;TNÞÞ TF scheme that weights term occurrence by its RF relevance [26]
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4. Learning term-weighting schemes via GP

As previously mentioned, the traditional approach for defining
TWSs has been somewhat successful so far. Nevertheless, it is still
unknown whether we can automatize the TWS definition process
and obtain TWSs of better classification performance in TC tasks.
In this context, we propose a genetic programming solution that
aims at learning effective TWSs automatically. We provide the
genetic program with a pool of TDR and TR weights as well as other
TWSs and let a program search for the TWS that maximizes an esti-
mate of classification performance. Thus, instead of defining TWSs
based on our own experiences on text mining, we let a computer
itself to build an effective TWS. The advantages of this approach
are that, on the one hand, it may allow to learn a specific TWS
for each TC problem, or, on the other hand, to learn TWSs from
one data set (e.g., a small one) and implement it in a different col-
lection (e.g., a huge one). Furthermore, the method reduces the
dependency on users/data-analysts and their degree of expertise
and biases for defining TWSs. The rest of this section describes
the proposed approach. We start by providing a brief overview of
genetic programming, then we explain in detail the proposal,
finally, we close this section with a discussion on the benefits
and limitations of our approach.
Fig. 1. A generic diagram of an evolutionary algorithm.
4.1. Genetic programming

Genetic programming (GP) [27] is an evolutionary technique
which follows the reproductive cycle of other evolutionary algo-
rithms such as genetic algorithms (see Fig. 1): an initial population
is created (randomly or by a pre-defined criterion), after that,
individuals are selected, recombined, mutated and then placed
back into the solutions pool. The distinctive feature of GP, when
compared to other evolutionary algorithms, is in that complex data
structures are used to represent solutions (individuals), for exam-
ple, trees or graphs. As a result, GP can be used for solving complex
learning/modeling problems.

In our case, GP automatically determines what primitives to
combine and what operators to apply for combining them. This
would not be possible to do with other bio-inspired algorithms
or meta-heuristics (e.g., genetic algorithms), were we would have
to assume a fixed way to combine primitives (e.g., by addition or
product of primitives) in that case, the optimization strategy would
select what primitives to use, but not what operators to use (e.g.,
power, square-root, product, division, logarithm, etc.). In the fol-
lowing we describe the GP approach to learn TWSs for TC.
4.2. TWS learning with genetic programming

We face the problem of learning TWSs as an optimization one,
in which we want to find a TWSs that maximizes the classification
performance of a classifier trained with the TWS. We define a valid
TWS as the combination of: (1) other TWSs, (2) TR and (3) TDR fac-
tors, and restrict the way in which such components can be com-
bined by a set of arithmetic operators. We use GP as
optimization strategy, where each individual corresponds to a
tree-encoded TWS. The proposed genetic program explores the
search space of TWSs that can be generated by combining TWSs,
TRs and TDRs with a predefined set of operators. The remainder
of this section details the components of the proposed genetic pro-
gram: representation, terminals, function set, operators and fitness
function; Table 2 summarizes its main parameters.
4.2.1. Representation
Solutions to our problem are encoded as trees, where we define

terminal nodes to be the building blocks of TWSs. On the other
hand, we let internal nodes of trees to be instantiated by arithmetic
operators that combine the building blocks to generate new TWSs.
The representation is graphically described in Fig. 2.



Table 2
GP parameters.

Parameter Value

Population size 50
Number of generations 50
Terminals see Table 1
Function set (F ) fþ;�; �; =; log2x;

ffiffiffi
x
p

; x2g
Crossover rate 90%
Mutation rate 10%
Maximum init. depth 6
Maximum depth search 17
Tournament Lexictour [28]

Table 3
Terminal set.

Variable Meaning

W1 N, Constant matrix, the total number of training documents
W2 kVk, Constant matrix, the number of terms
W3 CHI, Matrix containing in each row the vector of v2 weights for the

terms
W4 IG, Matrix containing in each row the vector of information gain

weights for the terms
W5 TF � IDF, Matrix with the TF-IDF term weighting scheme
W6 TF, Matrix containing the TF term-weighting scheme
W7 FGT, Matrix containing in each row the global term-frequency for

all terms
W8 TP, Matrix containing in each row the vector of true positives for all

terms
W9 FP, Matrix containing in each row the vector of false positives
W10 TN, Matrix containing in each row the vector of true negatives
W11 FN, Matrix containing in each row the vector of false negatives
W12 Accuracy, Matrix in which each row contains the accuracy obtained

when using the term as classifier
W13 Accuracy Balance, Matrix containing the AC_Balance each (term,

class)
W14 BNS, An array that contains the value for each BNS per (term, class)
W15 DFreq, Document frequency matrix containing the value for each

(term, class)
W16 FMeasure, F-Measure matrix containing the value for each (term,

class)
W17 OddsRatio, An array containing the OddsRatio term-weighting
W18 Power, Matrix containing the Power value for each (term, class)
W19 ProbabilityRatio, Matrix containing the ProbabilityRatio each (term,

class)
W20 Max Term, Matrix containing the vector with the highest repetition

for each term
W21 RF, Matrix containing the RF vector
W22 TF � RF, Matrix containing TF � RF

Fig. 2. Representation adopted for TWS learning.
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4.2.2. Terminals and function set
As previously mentioned, traditional TWSs are usually formed

by two factors: a term-document relevance (TDR) weight and a
term-relevance (TR) factor. The most used TDR is term frequency
(TF), as allows one to relate documents with the vocabulary. We
consider TF as TDR indicator, but also we consider standard TWSs
(e.g., Boolean, TD, RF) as TDR weights. The decision to include other
TWSs as building blocks is in order to determine whether standard
TWSs can be further enhanced with GP. Regarding TR, there are
many alternatives available. In this work we analyzed the most
common and effective TR weights as reported in the literature
[35,4,26,11,21] and considered them as building blocks for
generating TWSs. Finally we also considered some constants as
building blocks. The full set of building blocks (terminals in the
tree representation) considered is shown in Table 1, whereas the
set of operators considered in the proposed method (i.e., the func-
tion set, F ) is shown in Table 2.

In the proposed approach, a TWS is seen as a combination of
building blocks by means of arithmetic operators. One should note,
however, that three types of building blocks are considered: TDR,
TR and constants. Hence we must define a way to combine matri-
ces (TDR weights), vectors (TR scores) and scalars (the constants),
in such a way that the combination leads to a TWS (i.e., a form
of TDR). Accordingly, and for easiness of implementation, each
building block shown in Table 1 is processed as a matrix of the
same length as the TWS (i.e., N � jV j) and operations are performed
element-wise. In this way a tree can be directly evaluated, and the
operators are applied between each element of the matrices, lead-
ing to a TWS.

TDRs are already matrices of the same size as the TWSs: N � jV j.
In the case of TRs, we have a vector of length jV j, thus for each TR
we generate a matrix of size N � jV j where each of its rows is the
TR; that is, we repeat N times the TR weight. In this way, for
example, a TWS like TF-IDF can be obtained as TF � IDF, where
the � operator means that each element tfi;j of TF is multiplied
by each element of the IDF matrix idfi;j and where

idfi;j ¼ log N
df ðtjÞ

� �
for i ¼ 1; . . . ;N, all TRs were treated similarly. In

the case of constants we use a scalar-matrix operator, which means
that the constant is operated with each element of the matrix
under analysis.

Estimating the matrices each time a tree is evaluated can be a
time consuming process, therefore, at the beginning of the search
process we compute the necessary matrices for every terminal
from Table 1. Hence, when evaluating an individual we only have
to use the values of the precomputed matrices and apply the
operators specified by a tree.
4.2.3. Genetic operators
As explained above, in GP a population of individuals is initial-

ized and evolved according to some operators that aim at improv-
ing the quality of the population. This section details such
operators.

For initialization we used the standard ramped-half-and-half
strategy [13], which generates half of the population with (bal-
anced) trees of maximum depth (using the full method), and the
other half with trees of variable depth (with the grow method).
This is the most common initialization operator in GP. For this
work we fixed the maximum initialization deep to 6, see Table 2.
One should note that this restriction on the maximum depth is
on the initialization stage only, during the search process deeper
trees may be generated; the maximum deep allowed during the
search process is of 17, longer trees are considered as invalid solu-
tions and they are assigned a quite small fitness value (e.g., 0 or
�1).

As genetic operators we also used standard mechanisms: we
considered the subtree crossover and point mutation operators,



Fig. 3. Graphical description of crossover (left) and mutation (right) operators considered in this work.
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Fig. 3 describes graphically these operators. The role of crossover is
to take two promising solutions and combine their information to
give rise to two offspring, with the goal that the offspring have bet-
ter performance than the parents. The subtree crossover works by
selecting two parent solutions/trees (in our case, via tournament3)
and randomly select an internal node in each of the parent trees (see
the top of the left plot in Fig. 3). Two offspring are created by inter-
changing the subtrees below the identified nodes in the parent solu-
tions (see the bottom of the left plot in Fig. 3).

The function of the mutation operator is to produce random
variations in the population, facilitating the exploration capabili-
ties of GP. The considered mutation operator first selects an
individual to be mutated. Next an internal node of the individual
is identified, and next the selected node is replaced by a randomly
generated subtree (see the right plot in Fig. 3). One should note
that the considered crossover and mutation operators may pro-
duce trees whose deep exceeds the maximum allowed (17), in such
case, the solution is considered as invalid.
4.2.4. Fitness function
As previously mentioned, the aim of the proposed GP approach

is to generate a TWS that obtains competitive classification perfor-
mance. In this direction, the goodness of an individual is assessed
via the classification performance of a predictive model that uses
the representation generated by the TWS. Specifically, given a solu-
tion to the problem, we first evaluate the tree to generate a TWS
using the training set. Once training documents are represented
by the corresponding TWS, we perform a k-fold cross-validation
procedure to assess the effectiveness of the solution. In k-fold cross
validation, the training set is split into k disjoint subsets, and k
rounds of training and testing are performed; in each round k� 1
subsets are used as training set and 1 subset is used for testing,
the process is repeated k times using a different subset for testing
each time (k ¼ 2 was used in all of our experiments). The average
classification performance is directly used as fitness function.
Specifically, we evaluate the performance of classification models
with the f 1 measure. Let TP; FP and FN to denote the true positives,
false positives and false negative rates for a particular class, preci-
sion (Prec) is defined as TP

TPþFP and recall (Rec) as TP
TPþFN. f 1-measure is

simply the harmonic average between precision and recall:
3 The so called Lexictour tournament was considered [36,28], which consists in
selecting a random number of individuals from the population and using the best
solution in the subset as parent. Whenever two individuals have equal fit, the shortest
one is chosen as parent.
f 1 ¼ 2�Prec�Rec
PrecþRec . The average across classes is reported (also called,

macro-average f 1), this way of estimating the f 1-measure is known
to be particularly useful when tackling unbalanced data sets [35].

Since under the fitness function k models have to be trained and
tested for the evaluation of a single TWS, we need to look for an
efficient classification model that, additionally, can deal naturally
with the high-dimensionality of data. Support vector machines
(SVM) comprise a type of models that have proved to be very effec-
tive for TC [35,22]. SVMs can deal naturally with the sparseness
and high dimensionality of data, however, training and testing an
SVM can be a time consuming process. Therefore, we opted for effi-
cient implementations of SVMs that have been proposed recently
[46,12]. That methods are trained online and under the scheme
of learning with a budget. We use the predictions of an SVM as
the fitness function for learning TWSs. Among the methods avail-
able in [12] we used the low-rank linearized SVM (LLSMV) [46].
LLSVM is a linearized version of non-linear SVMs, which can be
trained efficiently with the so called block minimization frame-
work [6]. We selected LLSVM instead of alterative methods,
because this method has outperformed several other efficient
implementations of SVMs, see e.g., [12,46].
4.3. Summary

We have described the proposed approach to learn TWSs via GP.
When facing a TC problem we start by estimating all of the term-
inals described in Table 1 for the training set. The terminals are
feed into the genetic program, together with the function set. We
used the GPLAB toolbox for implementing the genetic program
with default parameters [36]. The genetic program searches for
the tree that maximizes the k-fold cross validation performance
of an efficient SVM using training data only. After a fixed number
of generations, the genetic program returns the best solution found
so far, the best TWS. Training and test (which was not used during
the search process) data sets are represented according to such
TWS. One should note that all of the supervised term-weights in
Table 1 are estimated from the training set only (e.g., the informa-
tion gain for terms is estimated using only the labeled training
data); for representing test data we use the pre-computed term-
weights. Next, the LLSVM is trained in training data and the trained
model makes predictions for test samples. We evaluate the perfor-
mance of the proposed method by comparing the predictions of
the model and the actual labels for test samples. The next section
reports results of experiments that aim at evaluating the validity
of the proposed approach.
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5. Experiments and results

This section presents an empirical evaluation of the proposed
TWL approach. The goal of the experimental study is to assess
the effectiveness of the learned TWSs and compare their perfor-
mance to existing schemes. Additionally, we evaluate the general-
ization performance of learned schemes, and their effectiveness
under different settings.

5.1. Experimental settings

For experimentation we considered a suite of benchmark data
sets associated to three types of tasks: thematic TC, authorship
attribution (AA, a non-thematic TC task) and image classification
(IC). Table 4 shows the characteristics of the data sets. We consid-
ered three types of tasks because we wanted to assess the general-
ity of the proposed approach.

Seven thematic TC data sets were considered, in these data sets
the goal is to learn a model for thematic categories (e.g., sports
news vs. religion news). The considered data sets are the most used
ones for the evaluation of TC systems [35]. For TC data sets, index-
ing terms are the words (unigrams), stop words were removed and
stemming was applied before indexing. Likewise, seven data sets
for AA were used, the goal in these data sets is to learn a model
capable of associating documents with authors. Opposed to the-
matic collections, the goal in AA is to model the writing style of
authors, hence, it has been shown that different representations
and attributes are necessary for facing this task [39]. Accordingly,
indexing terms in AA data sets were 3-grams of characters, that
is, sequences of 3-characters found in documents, these terms have
proved to be the most effective ones in AA [39,16,29]; stop words
were not removed for AA data sets. Finally, two data sets for image
classification, taken from the CALTECH-101 collection, were used.
We considered the collection under the standard experimental set-
tings (15 images per class for training and 15 images for testing),
two subsets of the CALTECH-101 data set were used: a small one
with only 5 categories and the whole data set with 102 classes
(101 object categories plus background) [19]. Images were repre-
sented under the Bag-of-Visual-Words formulation using dense sift
descriptors (PHOW features): sift descriptors were extracted from
training images, and then clustered using k-means, the centers of
the clusters (i.e., prototypical visual descriptors) are considered
as the visual words (i.e., the indexing terms); both, training and
test, images are then represented by accounting the frequency of
Table 4
Data sets considered for experimentation.

Data set Classes Terms Train Test

Text categorization
Reuters-8 8 23583 5339 2333
Reuters-10 10 25,283 6287 2811
20-Newsgroup 20 61,188 11,269 7505
TDT-2 30 36,771 6576 2818
WebKB 4 7770 2458 1709
Classic-4 4 5896 4257 2838
CADE-12 12 193,731 26,360 14,618

Authorship attribution
CCA-10 10 15,587 500 500
Poetas 5 8970 71 28
Football 3 8620 52 45
Business 6 10,550 85 90
Poetry 6 8016 145 55
Travel 4 11,581 112 60
Cricket 4 10,044 98 60

Image classification
Caltech-101 101 12,000 1530 1530
Caltech-tiny 5 12,000 75 75
occurrence of visual words (visual descriptors in each image are
compared to the visual words, each visual descriptor is assigned
to their nearest visual word), the VLFEAT toolbox was used for pro-
cessing images [42].

The considered data sets have been partitioned into training
and test subsets (the number of documents for each partition
and each data set are shown in Table 4). For some data sets there
were predefined categories, while for others we randomly gener-
ated them using 70% of documents for training and the rest for
testing. All of the preprocessed data sets in Matlab format are pub-
licly available under request.

For each experiment, the training partition was used to learn
the TWS, as explained in Section 4. The learned TWS is then evalu-
ated in the corresponding test subset. We report two performance
measures: accuracy, which is the percentage of correctly classified
instances, and f 1 measure, which assesses the tradeoff between
precision and recall across classes (macro-average f 1), recall that
f 1 was used as fitness function (see Section 4).

The genetic program was run for 50 generations using pop-
ulations of 50 individuals, we would like to point out that in each
run of the proposed method we have used default parameters. It is
expected that by optimizing parameters and running the genetic
program for more generations and larger populations we could
obtain even better results. The goal of our study, however, was to
show the potential of our method even with default parameters.
5.2. Evaluation of TWS learning via genetic programming

This section reports experimental results on learning TWSs with
the genetic program described in Section 4. The goal of this experi-
ment is to assess how TWSs learned via GP compare with tradi-
tional TWSs. The GP method was run on each of the 16 data sets
from Table 4, since the vocabulary size for some data sets is huge
we decided to reduce the number of terms by using term-fre-
quency as criterion. Thus, for each data set we considered the
top 2000 more frequent terms during the search process. In this
way, the search process is accelerated at no significant loss of accu-
racy. In Section 5.3 we analyze the robustness of our method when
using the whole vocabulary size for some data sets.

For each data set we performed 5 runs with the GP-based
approach, we evaluated the performance of each learned TWS
and report the average and standard deviation of performance
across the five runs. Tables 5–7 show the performance obtained
by TWSs learned for thematic TC, AA and IC data sets, respectively.
In the mentioned tables we also show the result obtained by the
best baseline in each collection. Best baseline is the best TWS we
found (from the set of TWSs reviewed in related work and the
TWSs in Table 1) for each data set (using the test-set performance).
Please note that under these circumstances best baseline is in fact, a
quite strong baseline for our GP method. Also, we would like to
emphasize that no parameter of the GP has been optimized, we
used the same default parameters for every execution of the
genetic program. For completion, we also show in Table 5 the per-
formance obtained by the best TWS obtained with the method of
[9]. For this, we evaluated all of the schemes reported in
Cummins and O’Riordan [9,10,8] and report the result for the best
TWS we found.4 It is important to emphasize that this TWS is tai-
lored for information retrieval tasks and we provide results for illus-
tration purposes.
4 The selected weight is defined as follows: B� log N=dfffiffiffiffi
df
p � log cf

df � log df
� �

, where B

is the Boolean TWS, N the number of documents in the collection, df the number of
documents a term appears in, and cf the frequency of a term in the collection. The first
term, B, is a TDR weight whereas the second part is a TR factor. For details see Eq. (9)
in [9].



Table 5
Classification performance on thematic TC obtained with learned TWSs, the best baseline, and the TWS of [9].

Data set PG-avg. Best baseline Cummins et al.

f 1 Acc. f 1 Acc. Baseline f 1 Acc.

Reuters-8 90:56� 1:43 91:35� 1:99 86.94 88.63 TF 74.44 88.30
Reuters-10 88:21� 2:69 91:84� 1:01 85.24 93.25 TFIDF 76.59 87.59
20-Newsgroup 66:23� 3:84 67:97� 4:16 59.21 61.99 TF 65.78 66.45
TDT-2 96:95� 0:41 96:95� 0:57 95.20 95.21 TFIDF 95.71 97.02
WebKB 88:79� 1:26 89:12� 1:30 87.49 88.62 B 71.97 75.42
Classic-4 94:75� 1:08 95:42� 0:67 94.68 94.86 TF 86.59 87.14
CADE-12 41:03� 4:45 53:80� 4:0 39.30 41.89 TF 38.91 48.44

Table 6
Classification performance on AA obtained with learned TWSs, the best baseline, and the TWS of [9].

Data set PG-avg. Best baseline Cummins et al.

f 1 Acc. f 1 Acc. Baseline f 1 Acc.

CCA-10 70:32� 2:73 73:72� 2:14 65.90 73.15 TF-IG 1.82 10
Poetas 72:23� 1:49 72:63� 1:34 70.61 71.84 TF-IG 7.36 22.54
Football 76:37� 9:99 83:76� 4:27 76.45 83.78 TF-CHI 76.54 77.78
Business 78:08� 4:87 83:58� 1:57 73.77 81.49 TF-CHI 75.48 75.56
Poetry 70:03� 7:66 74:05� 7:38 59.93 76.71 B 44.89 56.36
Travel 73:92� 10:26 78:45� 6:72 71.75 75.32 TF-CHI 67.58 68.33
Cricket 88:10� 7:12 92:06� 3:29 89.81 91.89 TF-CHI 91.70 91.67

Table 7
Classification performance on IC obtained with learned TWSs, the best baseline, and the TWS of [9].

Data set PG- avg. Best baseline Cummins et al.

f 1 Acc. f 1 Acc. Baseline f 1 Acc.

Caltech-101 61:91� 1:41 64:02� 1:42 58.43 60.28 B 52.54 54.18
Caltech-tiny 89:70� 2:44 91:11� 2:36 85.65 86.67 TF 82.43 82.67
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From Table 5 it can be seen that, regarding the best baseline,
different TWSs obtained better performance for different data sets.
Hence evidencing the fact that different TWSs are required for dif-
ferent problems. On the other hand, it can be seen that the average
performance of TWSs learned with our GP outperformed signifi-
cantly the best baseline in all but one result (accuracy for
Reuters-10 data set). The differences in performance are large,
mainly for the f 1 measure, which is somewhat expected as this
was the measure used as fitness function (recall f 1 measure is
appropriate to account for the class imbalance across classes);
hence showing the competitiveness of our proposed approach for
learning effective TWSs for thematic TC tasks. Regarding the TWS
from [9], it can be seen that this TWS performed, in general, the
worst. This is not that surprising as this TWS has been optimized
for information retrieval tasks, yet, for some tasks the performance
is competitive with the best baseline (see, e.g., 20-Newsgroup,
CADE-12 and TDT-2 data sets).

From Table 6 it can be seen that for AA data sets the best base-
line performs similarly as the proposed approach. In terms of f 1

measure and accuracy, our method outperforms the best baseline
in 5 out of 7 data sets. Therefore, our method still obtains compara-
ble (slightly better) performance to the best baselines, which for
AA tasks were much more competitive than in thematic TC prob-
lems. One should note that for PG we are reporting the average
performance across 5 runs, among the 5 runs we found TWSs that
consistently outperformed the best baseline. The performance of
the TWS from [9] in AA data sets is erratic: it obtains the best per-
formance in f 1 measure for two data sets, but it obtained perfor-
mance close to random guessing in two other data sets, our
method outperforms significantly such TWS.

It is quite interesting that, comparing the best baselines from
Tables 5 and 6, for AA tasks supervised TWSs obtained the best
results (in particular TF-CHI in 4 out of 7 data sets), whereas for
thematic TC unsupervised TWSs performed better. Again, these
results show that different TWSs are required for different data
sets and different types of problems. In fact, our results confirm
the fact that AA and thematic TC tasks are quite different, and,
more importantly, our study provides evidence on the suitability
of supervised TWSs for AA; to the best of our knowledge, super-
vised TWSs have not been used in AA problems.

Table 7 shows the results obtained for the image categorization
data sets. Again, the proposed method obtained TWSs that outper-
formed the best baselines and the TWS from [9]. This result is quite
interesting because we are showing that the TWS plays a key role
in the classification of images under the BOVWs approach. In com-
puter vision most of the efforts so far have been devoted to the
development of novel/better low-level image-descriptors, using a
BOW with predefined TWS. Therefore, our results pave the way
for research on learning TWSs for image categorization and other
tasks that rely in the BOW representation (e.g. speech recognition
and video classification).

Fig. 4 and Table 8 complement the results presented so far.
Fig. 4 indicates the difference in performance between the (average
of) learned TWSs and the best baseline for each of the considered
data sets. We can clearly appreciate from this figure the magnitude
of improvement offered by the learned TWSs, which in some cases
is too large.

Table 8, on the other hand, shows a more fair comparison
between our method and the reference TWSs: it shows the average
performance obtained by reference schemes and the average per-
formance of our method for thematic TC, AA and IC data sets. It
is clear from this table that in average our method performs consis-
tently better than any of the reference methods in terms of both
accuracy and f 1 measure for the three types of tasks. Thus, from
the results of this table and those from Tables 5–7, it is evident that
standard TWSs are competitive, but one can take advantage of
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Fig. 4. Difference in performance between learned TWSs and best baseline per each data set, values above zero indicate better performance obtained by the TWSs.

Table 8
Average performance on thematic TC obtained with learned TWSs and the baselines.

TWS Thematic TC AA IC

f 1 Acc. f 1 Acc. f 1 Acc.

TF 76.60 79.53 62.17 72.43 68.86 71.54
B 77.42 79.73 66.07 76.76 71.22 72.78
TFIDF 61.69 76.17 40.88 55.26 62.27 67.56
TF-CHI 71.56 75.63 68.75 73.69 65.38 67.45
TF-IG 64.22 69.00 68.96 74.91 66.02 67.93

PG-worst 77.81 81.19 66.47 74.84 74.30 75.67
PG-Avg. 81.01 83.63 75.58 79.75 75.81 77.07
PG-best 82.88 85.81 81.37 83.98 76.97 78.18
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them only when the right TWS is selected for each data set. Also,
the performance of TWSs learned with our approach are a better
option than standard TWSs, as in average we were able to obtain
much better representations.

Summarizing the results from this section, we can conclude
that:

� The proposed GP obtained TWSs that outperformed the best
baselines and the TWS from [9] in the three types of tasks: the-
matic TC, AA and IC. Evidencing the generality of our proposal
across different data types and modalities. Larger improve-
ments were observed for thematic TC and IC data sets. In aver-
age, learned TWSs outperformed standard ones in the three
types of tasks.
� Our results confirm our hypothesis that different TWSs are

required for facing different tasks, and within a same task
(e.g., AA) a different TWS may be required for a different data
set. Hence, motivating further research on how to select TWS
for a particular TC problem.
� We show evidence that the proposed TWS learning approach is

a promising solution for enhancing the classification perfor-
mance in other tasks than TC, e.g., IC.
� Our results show that for AA supervised TWS seem to be more

appropriate, whereas unsupervised TWS performed better on
thematic TC and IC. This is a quite interesting result that may
have an impact in non-thematic TC and supervised term-
weighting learning.

5.3. Varying vocabulary size

For the experiments from Section 5.2 each TWS was learned by
using only the top 2000 most frequent terms during the search
process. This reduction in the vocabulary allowed us to speed up
the search process significantly, however, it is worth asking our-
selves what the performance of the TWSs would be when using
an increasing number of terms. We aim to answer such question
in this section.

For this experiment we considered three data sets, one from
each type of task: thematic TC, AA, and IC. The considered data sets
were the Reuters-8 (R8) for thematic TC, the CCA benchmark for
AA, and Caltech-101 for IC. These data sets are the representative
ones from each task: Reuters-8 is among the most used TC data
sets, CCA has been widely used for AA as well, and Caltech-101 is
the benchmark in image categorization For each of the considered
data sets we use a specific TWS learned using the top-2000 most
frequent terms (see Section 5.2), and evaluate the performance of
such TWSs when increasing the vocabulary size: terms were sorted
in ascending order of their frequency. Figs. 5–7 show the results of
this experiment in terms of f 1 measure and accuracy (the selected
TWS is shown in the caption of each image).

Different performance behavior can be observed in the different
data sets. Regarding Fig. 5, which shows the performance for a the-
matic TC data set, it can be seen that the TWS learned by our
method outperformed all other TWSs for any data set size. Hence
confirming the suitability of the proposed method for thematic TC.

Fig. 6, on the other hand, behaves differently: the proposed
method outperforms all the other TWSs only for a single data set
size (when 20% of the terms were used). In general, our method
consistently outperformed TF-CHI and TF-IG TWSs, and performs
similarly as TF-IDF, but it was outperformed by the TF-RF TWS.
This result can be due to the fact that for this AA data set, the
genetic program learned a TWS that was suitable only for the
vocabulary size that was used during the optimization. Although,
interesting, this result is not that surprising: in fact, it is well
known in AA that the number of terms considered in the vocabu-
lary plays a key role on the performance of AA systems. AA studies
suggest that using a small amount of the most-frequent terms
when approaching an AA problem results in better performance
[39,16,29]. Our results from Fig. 6 corroborate the latter and seem
to indicate that when approaching an AA problem, one should first
determine an appropriate vocabulary size and then apply our
method. One should note, however, that our method outperforms
the other TWSs for the data set size that was used during the
optimization, and this is, in fact, the highest performance that
can be obtained with any other TWS and data set size combination.

Finally, Fig. 7 reports the performance of TWSs for the Caltech-
101 data set under different data set sizes. In this case, the learned
TWS outperforms all other TWSs when using more than 20% and
30% in terms of f 1 measure and accuracy, respectively. The
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improvement is consistent and monotonically increases as more
terms are considered. Hence showing the robustness of the learned
TWS when increasing the vocabulary size for IC tasks. Among the
other TWSs, TFIDF obtains competitive performance when using
a small vocabulary, this could be due to the fact that when con-
sidering a small number of frequent terms the IDF component is
important for weighting the contribution of each of the terms.

Summarizing the results from this section we can conclude the
following:

� TWSs learned with our method are robust to variations in the
vocabulary size for thematic TC and IC tasks. This result sug-
gests, we can learn TWSs using a small number of terms (mak-
ing more efficient the search process) and evaluating the
learned TWSs with larger vocabularies.
� Learned TWSs outperform standard TWSs in thematic TC and IC
tasks when varying the vocabulary size.
� For AA, TWSs learned with our proposed approach seem to be

more dependent on the number of terms used during training.
Hence, when facing this type of problems it is a better option
to fix the number of terms beforehand and then running our
method.

5.4. Generalization of the learned term-weights

In this section we evaluate the inter-data set generalization
capabilities of the learned TWSs. Although results presented so
far show the generality of our method across three types of tasks,
we have reported results obtained with TWSs that were learned for
each specific data set. It remains unclear whether the TWSs learned



Table 9
Considered TWSs for the inter-data set generalization experiment for each data set. In column 2 each TWS is shown as a prefix expression, the names of the variables are self-
explanatory. Column 3 shows the mathematical expression of each TWS using the terminal set from Table 3.

ID Data set Learned TWS Formula

Text categorization
1 Reuters-8 -(sqrt(TFIDF),div(log2(sqrt(ProbR)),RF)) ffiffiffiffiffiffiffiffi

W5
p

� log
ffiffiffiffiffiffiffi
W19

p
W21

2 Reuters-10 sqrt(div(pow2(sqrt(TFIDF)),div(pow2(TF-RF),pow2(TF-RF))))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffiffiffiffi
W5

p
Þ

2

W2
22

W2
22

vuut
3 20-Newsg. sqrt(sqrt(div(TF,GLOBTF)))

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W6
W7

qr

4 TDT-2 sqrt(�(sqrt(sqrt(TFIDF)), sqrt(�(sqrt(TFIDF),IG))))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W5
pp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W5
p

�W4

pq
5 WebKB div(TF-RF,+(+(+(RF,TF-RF),FMEAS),FMEAS)) W22

ðððW21þW22ÞþW16ÞþW16Þ

6 Classic-4 �(ProbR,TFIDF) W5 �W19

7 CADE-12 div(TF,sqrt(log2(ACCU))) W6ffiffiffiffiffiffiffiffiffiffiffiffi
log W12

p

Authorship attribution
8 CCA-10 -(IG,plus(TF-RF,TFIDF)) W4 � ðW22 þW5Þ
9 Poetas -(-(RF,TF-RF),TF-IDF) ðW21 �W22Þ �W5

10 Football div(TF-RF,pow2(ODDSR)) W22

W2
17

11 Business minus(TF-RF,PROBR) W22 �W19

12 Poetry div(TF,log2(div(TF,log(TF-RF)))) W6

log
W6

log W22

13 Travel +(-(TF-RF,-(-(TF-RF,-(TF-RF,POWER)),POWER)),TF) ðW22 � ððW22 � ðW22 �W18ÞÞ �W18ÞÞ þW6

14 Cricket �(IG,TF-RF) W4 �W22

Image classification
15 Caltech-101 sqrt(sqrt(-(ODDSR,sqrt(sqrt(TF-RF)))))

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W17 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W22
ppqr

16 Caltech-tiny sqrt(-(TF-RF,ACBAL))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W22 �W13
p

5 Before generating the boxplots we normalized the performance on a per-data set
basis: for each data set, the performance of the 16 TWSs was normalized to the range
½0;1�, in this way, the variation in f 1-values across data sets is eliminated, i.e, all f 1
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for a collection can perform similarly in other collections, we aim
to answer to this question in this section.

To assess the inter-data set generalization of TWSs learned with
our method we performed an experiment in which we considered
for each data set a single TWS and evaluated its performance across
all the 16 considered data sets. The considered TWSs are shown in
Table 9, we named the variables with meaningful acronyms for
clarity but also show the mathematical expression using variables
as defined in Table 3.

Before presenting the results of the experiments it is worth ana-
lyzing the type of solutions (TWSs) learned with the proposed
approach. First of all, it can be seen that the learned TWSs are
not too complex: the depth of the trees is small and solutions have
few terminals as components. This is a positive result because it
allows us to better analyze the solutions and, more importantly,
it is an indirect indicator of the absence of the over-fitting phe-
nomenon. Secondly, as in other applications of genetic program-
ming, it is unavoidable to have unnecessary terms in the
solutions, for instance, the subtree: div(pow2(TF-RF),pow2(TF-RF)),
(from TWS 2) is unnecessary because it reduces to a constant
matrix; the same happens with the term pow2(sqrt(TFIDF)).
Nevertheless, it is important to emphasize that this type of terms
do not harm the performance of learned TWSs, and there are not
too many of these type of subtrees. On the other hand, it is inter-
esting that all of the learned TWSs incorporate supervised informa-
tion. The most used TR weight is RF, likewise the most used TDR is
TFIDF. Also it is interesting that simple operations over standard
TWSs, TR and TDR weights results in significant performance
improvements. For instance, compare the performance of TF-RF
and the learned weight for Caltech-101 in Fig. 7. By simply sub-
tracting an odds-ratio from the TF-RF TWS and applying scaling
operations, the resultant TWS outperforms significantly TF-RF.

The 16 TWSs shown in Table 9 were evaluated in the 16 data
sets in order to determine the inter-data set generality of the
learned TWSs. Fig. 8 shows the results of this experiment. We show
the results with boxplots, where each boxplot indicates the nor-
malized5 performance of each TWSs across the 16 data sets, for com-
pletion we also show the performance of the reference TWSs on the
16 data sets.

It can be seen from Fig. 8 that the generalization performance of
learned TWSs is mixed. On the one hand, it is clear that TWSs
learned for thematic TC (boxplots 7–13) achieve the highest
generalization performance. Clearly, the generalization perfor-
mance of these TWSs is higher than that of traditional TWSs (box-
plots 1–6). It is interesting that TWSs learned for a particular data
set/problem/modality perform well across different data sets/
problems/modalities. In particular, TWSs learned for Reuters-10
and TDT-2 obtained the highest performance and the lowest vari-
ance among all of the TWSs. On the other hand, TWSs learned for
AA and IC tasks obtained lower generalization performance: the
worst in terms of variance is the TWS learned for the Poetry data
set, while the worst average performance was obtained by the
TWS learned for the Football data set. TWSs learned for IC are com-
petitive (in generalization performance) with traditional TWSs.
Because of the nature of the tasks, the generalization performance
of TWSs learned from TC is better than that of TWSs learned for AA
and IC. One should note that these results confirm our findings
from previous sections: (i) the proposed approach is very effective
mainly for thematic TC and IC tasks; and, (ii) AA data sets are dif-
ficult to model with TWSs.

Finally, we evaluate the generality of learned TWSs across dif-
ferent classifiers. The goal of this experiment is to assess the
extend to which the learned TWSs are tailored for the classifier
they were learn for. For this experiment, we selected two TWSs
corresponding to Caltech-tiny and Caltech-101 (15 and 16 in
values are in the same scale and are comparable to each other.
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Fig. 8. Boxplots reporting the average performance of TWSs from Table 9 in the 16 data sets (x axis) considered in the study. For completion, we also show the performance of
standard TWSs.
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Table 9) and evaluated their performance of different classifiers
across the 16 data sets. Fig. 9 shows the results of this experiment.

It can be seen from Fig. 9 that the considered TWSs behaved
quite differently depending on the classifier. On the one hand,
the classification performance when using naïve Bayes (Naive),
kernel-logistic regression (KLogistic), and 1�nearest neighbors
(KNN) classifiers degraded significantly. On the other hand, the
performance of SVM and the neural network (NN) was very similar.
These results show that TWSs are somewhat robust across classi-
fiers of similar nature as SVM and NN are very similar classifiers:
both are linear models in the parameters. The other classifiers
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Fig. 9. Classification performance of selected TWSs across different classifiers, f 1

measure is reported. The plot at the top is a TWS learned for Caltech-tiny, while the
bottom plot shows the performance for a TWS learned for Caltech-101.
are quite different to the reference SVM and, therefore, the perfor-
mance is poor.6 It is interesting that in some cases the NN classifier
outperformed the SVM, although in average the SVM performed bet-
ter. This is a somewhat expected result as the performance of the
SVM was used as fitness function.

An experiment that we have postponed for future work is that
of using the performance of alternative classifiers for the fitness
function. In the current setting this is not feasible because, nowa-
days, learning on a budget is not a well studied topic for other clas-
sifiers than SVM; therefore, we would have to use standard
implementations of classifiers, which would increase the com-
putational cost of our TWS learning strategy.

According to the experimental results from this section we can
draw the following conclusions:

� TWSs learned with the proposed approach are not too complex
despite their effectiveness. Most of the learned TWSs included a
supervised component, evidencing the importance of taking
advantage of labeled documents.
� TWSs offer acceptable inter-data set generalization perfor-

mance, in particular, TWSs learned for TC generalize pretty well
across data sets.
� We showed evidence that TWSs learned for a modality (e.g.,

text/ images) can be very competitive when evaluated on other
modality.
� Learned TWSs are somewhat robust to the classifier choice. It is

preferable to use the classifier used to estimate the fitness func-
tion, although classifiers of similar nature perform similarly.

5.5. Computational cost and convergence

This section provides insights into the computational cost and
convergence capabilities of the proposed approach. Table 10
reports the average runtime7 of the TWS learning process for three
selected data sets: the one which took more time (20-Newsgroup),
one with average runtime (Reuters-8), and the one which took the
less time (Caltech-tiny).
6 One should note that among the three worse classifiers, KNN, Naive and KLogistic,
the latter obtained better performance than the former two, this is due to the fact that
KLogistic is closer, in nature, to an SVM.

7 Experiments were performed in a Laptop (Qosmio X75A Toshiba) with processor
Corei7-4700 at 2.4 GHz and 32 GB in RAM. All code was implemented in Matlab.



Table 10
Runtime (in min) of the TWS learning process for selected data sets.

Data set Runtime (m)

20-Newsgroup 1094:57� 147:14
Reuters-8 276:94� 98:53
Caltech-tiny 24:39� 13:21
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As previously mentioned, it can be seen that our method is
somewhat computationally expensive, where computational cost
is proportional with the size of the data set. For the 20-
Newsgroup data set our method took more than 18 h to obtain a
TWS, whereas for the Caltech-tiny data set it took less than half
an hour; for the mid-size collection, Reuters-8, took almost 5 h.
Although being computational demanding, one should note that
the process of learning TWSs is an offline procedure that, in prac-
tice, has to be done a single time. Therefore, we can say that apply-
ing our method is affordable for data sets of size comparable to
those used in our experiments.
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around the average fitness value in log scale.
On the other hand, recall in all of the previously reported
experiments the genetic programm was ran for 50 generations
only. Thus, it is worth analyzing the convergence behavior of our
method. Fig. 10 shows the maximum and average fitness function
value obtained during the search process for the 20-Newsgroup,
Reuters-8 and Caltech-tiny data sets.

It can be seen from this figure that after generation 25, approxi-
mately, the maximum value of the fitness value does not change.
The average fitness value of the population shows more variation,
but after generation 35 it seems to converge. In Fig. 11 we analyze
the behavior of the fitness function when running the genetic pro-
gram for up to 200 generations for the Reuters-8 data set. Similarly,
the maximum value of the fitness function does not change after
generation 20 or so. The standard deviation of the fitness values
(top plot in Fig. 11) shows that the algorithm converges very fast.
Therefore running the genetic program for more generations does
not seem to further improve the fitness value, this result is in
agreement with GP literature [27].

Furthermore, one should note that early stopping (i.e., optimiz-
ing a fitness function for not too long) is a widely known procedure
to avoid overfitting, when optimizing classification models (see e.g.
Escalante et al. [15]). Hence, running the genetic program for not
too many iterations may help to reduce the risk of capturing par-
ticularities of the training set that are not very helpful to
generalize.

6. Conclusions

We have described a novel approach to term-weighting scheme
(TWS) learning in text classification (TC). TWSs specify the way in
which documents are represented under a vector space model. We
proposed a genetic programming solution in which standard TWSs,
term-document, and term relevance weights are combined to give
rise to effective TWSs. We reported experimental results in 16
well-known data sets comprising thematic TC, authorship attribu-
tion and image classification tasks. The performance of the
102
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during the search process for the Reuters-8 data set. The top plot shows errorbars
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proposed method is evaluated under different scenarios.
Experimental results show that the proposed approach learns very
effective TWSs that outperform standard TWSs. The main findings
of this work can be summarized as follows:

� TWSs learned with the proposed approach outperformed sig-
nificantly to standard TWSs and those proposed in related work.
� Defining the appropriate TWS is crucial for image classification

tasks, an ignored issue in the field of computer vision.
� In authorship attribution, supervised TWSs are beneficial, in

comparison with standard TWSs.
� The performance of learned TWSs do not degrades when vary-

ing the vocabulary size for thematic TC and IC. For authorship
attribution a near-optimal vocabulary size should be selected
before applying our method.
� TWSs learned for a particular data set or modality can be

applied to other data sets or modalities without degrading the
classification performance. This generalization capability is
mainly present in TWSs learned for thematic TC and IC.
� Learned TWSs are easy to analyze/interpret and do not seem to

overfit the training data.

Future work directions include studying the suitability of the
proposed approach to learn weighting schemes for cross domain
TC. Also we would like to perform an in deep study on the useful-
ness of the proposed GP for computer vision tasks relying in the
Bag-of-Visual-Words formulation.
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