
SemanticWebBuilder: A Framework for Semantic
Web Applications Development

Javier Solis, Hasdai Pacheco, Karen Najera and Hugo Estrada
{javier.solis, ebenezer.sanchez, karen.najera, hugo.estrada}@infotec.com.mx

Fondo de Informacion y Documentacion para la Industria INFOTEC
Av. San Fernando 37, Col. Toriello Guerra, Mexico D.F. Mexico

http://www.infotec.com.mx

Abstract—Nowadays, the use of models in software analysis
and design is a common practice, moreover, most of the de-
velopment projects use UML models to capture the dynamic
and static view of the system to-be. With the emergence of
the Semantic Web and standards such as RDF and OWL, new
opportunities for the use of ontologies in software development
have arisen. In this context, several works have used ontologies
as a mechanism for the capture of system requirements and as an
input for automatic code generation. However, most of current
works propose generic development platforms that focus only in
the code generation phase. In this paper, an Ontology-Driven
Development Framework, called SemanticWebBuilder (SWB) is
presented which provides a defined methodology and an agile
platform for the development of semantic Web applications.
The SWB approach encourages ontology and code reuse to
reduce development time and has been widely used to develop
Web applications for several government agencies and private
companies in Mexico.

Keywords—Semantic Web Technologies, Ontology-Driven De-
velopment, Model-Driven Development

I. INTRODUCTION

Nowadays, it is recognized the importance of using models
in the software development life-cycle, in particular for large
software systems [1]. Thus, in the analysis and design phases,
models play an important role as a mechanism to capture
the static and dynamic views of the system to-be, allowing
to describe the problem domain, to create the documenta-
tion of system requirements and to estimate the complexity
of the whole system implementation; in the development
phase, models are used for the automatic generation of source
code through model to code transformations; finally, in the
maintenance phase, the source code could be automatically
regenerated from model definitions if requirements change.

In this context, Model-Driven Development (MDD) ap-
proaches have emerged to support software development life-
cycle. For instance, the Model-Driven Architecture (MDA),
an approach in which models are first-class artifacts, inte-
grated into the development process by means of a chain
of transformations from Platform-Independent Models (PIM)
through Platform-Specific Models (PSM) to coded applica-
tion [2]. Commonly, the PIM and PSM are defined in the
standard Unified Modeling Language (UML). For example:
AndroMDA [3], a general purpose development tool that gen-
erates components in different programming languages starting
from UML models; and Acceleo [4], a tool that provides code

generators (JEE, .Net, Php) and template editors for Eclipse.
MDA is used for the development of systems in several
domains, whilst, there are other MDD approaches focused in
specific domains that use Domain Specific Languages (DSL)
for the specification of models, for example: the WebDSL
generator [5], a DSL for web-applications which provides
modeling languages for the specification of data models and
custom pages, and for the manipulation of data.

On the other hand, with the emergence of the Semantic
Web [6] and the ontology models, as well as the creation of
new standards (such as RDF [7] and OWL [8]) and tools (such
as ontology editors, reasoners and RDF APIs), several research
works have addressed the incorporation of ontology models
in software development [9]–[12]. From this, a new MDD
approach have arisen, that is, Ontology-Driven Development
(ODD) where ontologies are used as models to address system
development [9]. ODD approaches (besides the advantages
of MDD) provide through ontologies a formal mechanism to
capture system requirements in a higher abstraction level for
a common understanding of the problem domain and they
enable the reasoning over generated models to achieve model
validation or new knowledge discovery [10]. Examples of
ODD works are: RDFReactor [13], a tool that automatically
generates Java classes from OWL ontologies by means of an
intermediate model (called JModel) to simplify the ontology
model and generate the Java classes, resolving the multiple
inheritance issue; and Jastor [14], which is focused on pro-
ducing object-oriented specifications from ontological models
in a semi-automatic way, therefore, it needs a manual Java
Class extension for each one of the generated interfaces in
order to achieve the implementation of the defined system.

Until recent years, the existing ODD approaches covered
only part of the entire software development life-cycle, but
there was no clear efforts to integrate semantic technologies to
drive the whole process. To address this issue, a new approach
called Ontology-Driven Information Systems (ODIS) [11] was
presented. Conceptually, ODIS does not limit the application
of ontologies to analysis and design, but enforces its use as
part of the final runtime components of the system. However,
there is still the need to provide a comprehensive framework
for the development of semantic software systems using ODIS
insights.

In this paper we present SemanticWebBuilder (SWB), a
practical framework for the agile development of Semantic
Web applications and information systems. SWB implements



the ideas of ODIS and uses ontologies and Semantic Web
standards throughout the software development process. Ac-
cordingly, ontologies are part of the system analysis and
design, but also serve as input for code generation and as
a mechanism to provide data management for running ap-
plications. To achieve this, SWB provides developers four
main elements: a) An extensible ontology for the domain of
Web applications and systems that represents system structure,
behavior and data model (all in a single model, rather than
MDA and DSL approaches that need several models), together
with business logic and software restrictions that would be
commonly hard coded in most current systems; b) a defined
methodology to drive the life-cycle of systems development
using ontology models; c) a transformation mechanism to
convert ontology models into source code; and d) a software
platform to accelerate the development of applications where
runtime data is persisted in RDF format.

SWB has been widely validated in practice through the
development of several products, as well as Web applications
and systems for Mexican government agencies and private
companies.

II. OVERVIEW OF THE SEMANTICWEBBUILDER
FRAMEWORK

The SemanticWebBuilder framework (figure 1) is devoted to
address agile development of applications and systems. To
achieve this, an ontology is used to model, in a method-
ological way, the system requirements specification (objects
architecture, behavioral aspects and display properties). To
accelerate requirements modeling, a base ontology (called
SWBOntology) with the definition of reusable concepts and
behavioural aspects for Web applications is extended.

After the modeling phase, the resulting requirements on-
tology is automatically processed by a code generator to
obtain the source code for the core of the system to-be. This
source code constitutes a domain specific API that encapsulates
classes and properties from the requirements ontology and
reuses implemented functionality for the concepts defined in
the base ontology. In this case, Java is the preferred output lan-
guage for the code generator. The generated API is supported
by a set of software libraries comprised in the SWBPlatform,
intended to accelerate software development and to provide a
standardized mechanism to manage object persistence in RDF
format in a transparent way for the developer.

Finally, with the generated API and the SWBPlatform,
developers proceed to code the application logic for the
system using a high level set of Java classes and methods
that encapsulate all the complexity of RDF data management.
In this final phase, SWBPlatform provides mechanisms to
automatically develop Web UI components for data capture
and display taking as schema the display properties defined in
the requirements ontology.

In the following subsections we describe the main com-
ponents and the development process of SWB, except for the
associated methodology, which is described in section III.

Fig. 1. SemanticWebBuilder Framework

A. SWBOntology

To achieve an agile and standardized way to capture system
requirements, the definition of the SWB Ontology1 was per-
formed using OWL. This ontology is intended to serve as a
base for extending new requirements ontologies.

Due to the multiple inheritance restrictions of the Java
language and to enforce a correct model to source code
transformation, two OWL classes were defined in the SWBOn-
tology. The first one is the SWBClass, which corresponds to a
system object definition in Java language (Java class). And the
second one is the SWBInterface, which corresponds to object
behaviours in Java language (Java interface). Accordingly,
concepts for Web applications development were defined as a
subclasses of the SWBClass, such as the concepts of WebPage,
User, Role, PresentationRule, Form, WebSite, etc. In the same
way, common behaviors for the concepts were defined as
subclasses of the SWBInterface, such as its capacity to be
activated, described, scheduled, traced or deleted. Additionally,
OWL concepts were defined to describe Web components,

1http://www.semanticbuilder.com/SemWB4/SWB4/swb/web/WEB-
INF/owl/swb.owl



code generation information and UI elements for the generated
system, such as the concepts of SemanticResource, CodePack-
age, FormElement and DisplayProperty.

It is important to point out that the SWBOntology is not
a generic domain ontology that describes the domain of Web
applications. It is instead a specific ontology that contains itself
the basic requirements for Web applications development and
code generation.

B. SWBPlatform

SWBPlatform is a software package with a set of Java classes
and libraries developed at the same time as the SWBOntology.
The main goal of SWBPlatform is to encapsulate manage-
ment and persistence of RDF information in a generic way,
using OWL definitions as data schemas to store and retrieve
RDF graphs. This allows to isolate the data layer from the
application layer through the definition of Java wrappers for
OWL concepts. This includes wrappers such as SemanticClass,
SemanticProperty, SemanticObject and SemanticLiteral, that
correspond to an OWL Class, OWL Property, RDF Resource
and RDF Literal respectively. Additionally, the definition of a
wrapper for the SWBClass and the SWBInterface classes was
done.

Internally, the wrappers for OWL concepts in SWB Plat-
form implement basic data validations and make use of com-
mon RDF libraries such as Apache Jena2 to achieve RDF
management through several triple stores and databases.

C. Code Generator

Once the SWBOntology and the SWBPlatform were devel-
oped, a code generator (SWBCodeGen) was built that uses
the wrappers of SWBPlatform. This code generator takes as
input a requirements ontology extending the SWB Ontology
and provides as output a set of Java classes and methods to
manage object properties and persistence. The generated code
constitutes a high level Java API that hides the complexity
associated to RDF management.

The transformation process from the ontology model to
Java code is performed following two simple rules: 1) a
concept definition in the requirements ontology, whose type is
SWBClass, is mapped to two Java Classes. The first one (base
class) is named adding the prefix ”Base” to the class name and
implements methods to get and set object properties through
SWBPlatform wrappers and utilities. The second one is named
the same as the the original OWL class and extends the base
class; 2) a concept definition in the requirements ontology
whose type is SWBInterface is mapped to the corresponding
wrapper in SWBPlatform (the wrapper is called GenericOb-
ject). This interface declares the methods to get and set object
properties.

Hierarchy of concepts in the requirements ontology is
preserved in the generated code using the Java ”extends”
mechanism. In the case that concepts subclass the SWBIn-
terface, the generated code implements the method definitions
in the extended classes making use of the Java ”implements”

2http://jena.apache.org/

Fig. 2. Mapping of OWL concepts to Java Classes in the code generation

mechanism. An schematic example of the transformation of
SWBClass concepts is presented in figure 2.

III. THE SWB SOFTWARE DEVELOPMENT CYCLE

The previously described components of the SWB framework
constitute its operational base. The methodological approach
to manage the development cycle, which constitutes the other
part of the framework, is exposed in this section.

Our approach reuses several aspects of the traditional
object-oriented methodologies, considering the same phases
of software development. However, our phases have different
meaning and also generate different types of outputs, mainly in
the requirements elicitation and knowledge modeling phases.
Figure 3 shows the iterative context of the approach, where
the domain knowledge is refined using ontology models. In the
early stage of the development (the first one or two cycles), the
participation of experts of the problem domain is required to
help in the capture of relevant knowledge and system require-
ments, as well as to detect possible ontologies to reuse. Each
subsequent iteration involves a refinement of both the software
system implementation and the associated knowledge model,
accelerating the development as the captured knowledge for

Fig. 3. SWB Software development cycle



the system converges to cover the solution domain and the
system fulfills all the defined requirements.

At the end of each iteration a review of the development
status must be performed by the development leader in order
to analyze current conditions and take the decision to proceed
to the next iteration or to an intermediate step (possible
intermediate steps are marked as diamonds in Figure 3). For
example, if as a result of the review it is determined that
the knowledge domain remains without changes according to
previous cycles, and only certain aspects of the functionality
need to be adjusted, then the next cycle will start from the
development phase of the process instead of the knowledge
modeling phase.

It is important to point out that even if the approach
presented in Figure 3 has similarities with the spiral model of
Boehm [15], there are several conceptual and functional dif-
ferences in modeling and development phases. To be precise,
the input of our approach is a set of concepts and requirements
(defined in ontologies) closer to the final users way of thinking,
instead of objects that are usually only understood by software
engineers. By the other hand, the output is an ontology-
driven information system, which considers and implements
data persistence in RDF format.

IV. USING SWB FOR THE DEVELOPMENT OF A
SEMANTIC CONTENT MANAGEMENT SYSTEM

To prove the applicability of SWB in industrial development
projects, the definition and implementation of a Semantic Con-
tent Management System (Semantic CMS) was achieved using
the presented ideas. The Semantic CMS (called SWBPortal3)
was intended to be the new major version of the flagship CMS
of INFOTEC. This new version should provide a powerful
and flexible Web platform for the management of several Web
sites, Web pages, and Web components giving context to the
published information through the use of Semantic technology,
thus allowing the subsequent deployment of Semantic Web
applications. The phases in the development of SWBPortal,
conducted during several iterations are described in the follow-
ing subsections. These phases served as well to validate the
systematic achievement of results using the SWB framework.

A. Requirements elicitation

This activity was executed using traditional Requirements
Engineering methodologies and taking as baseline the imple-
mented functionality in the previous version of the flagship
CMS, as well as new requirements coming from final users.
A main difference of our approach of doing this activity
is that the main goal, besides the gathering of functional
requirements, was the discovering of the knowledge (concepts,
hierarchical and associative relations) of the CMS domain,
hidden along the different UML models, documentation and
source code of previous system. The result of this activity was
an entity-relationship diagram of the domain and the list of
functional requirements for SWBPortal.

3http://www.semanticwebbuilder.org.mx/es/swb/SWB Portal Productos

B. SWBPortal Knowledge modeling

Following our approach, the concepts of the CMS domain
and the SWBPortal requirements were modeled in an ontology.
In this particular case, the SWBOntology was not extended,
but rather complemented with SWBPortal knowledge. This
means that the SWBOntology also contains the SWBPortal
requirements. The decision of modeling requirements this way
was made for the following two reasons: a) the SWBOntology
already defined many of the CMS domain concepts; b) to allow
all Web components developed using SWB to be included
seamlessly in Web pages deployed using SWBPortal.

Thus, to complete this activity, new concepts such as those
of hierarchical relation and hierarchical node were added to the
SWBOntology along with behaviors and properties needed to
implement SWBPortal. The final result was the SWBOntology
enriched and containing the definition of classes, properties
and relations needed for the development of Semantic Web
applications to be deployed mainly through SWBPortal.

C. Code Generation and SWBPortal development

In this activity, the SWBCodeGen was configured and
executed taking as input the SWBOntology in order to get
the source code of the core SWBPortal. The result was the
Java API of SWBPortal (SWBPortal API) with all classes and
methods needed to manage the persistence of Web content in
RDF format. Using the SWBPortal API and the SWBPlatform,
functions to manage portlet-like components and a mechanism
to build generic Web forms (SWBFormManager) to capture
and present the information of SWBPortal objects were devel-
oped as a first step. As a second step, all the components of
SWBPortal were developed on top of a Java Web application
architecture.

These components included modules for the management
of user sessions, publish flows, user devices, user rules, Web
sites and Web pages, as well as modules to edit HTML tem-
plates, insert Web components, count hits, generate reports, log
user activity, index and search content, etc. Finally, the design
and integration of Web UI components was achieved using
the SWBFormManager to provide a generic UI environment,
customizable for many Web sites and components. The result
of this activity was SWBPortal itself.

D. SWBPortal test, deployment and release

This final activity was done using traditional testing and
deployment methodologies. An advantage of using SWB,
confirmed in testing, was the decreased rate of bugs injection
in the code of objects persistence (because of the automatic
code generation). Also, this code reduced testing time because
it had to be tested only once. In fact, we can make sure that
if the generated code works for a particular case, it works the
same for all other cases.

V. CONCLUSION

We have presented SemanticWebBuilder, an agile framework
for the development of Semantic Web applications that imple-
ments the ODIS ideas. To build the framework, one needed
step was the definition of a base ontology for requirements



elicitation. This extensible ontology, called SWBOntology
captures the definition of concepts from the domain of Web
applications and systems, as well as behavioral aspects for
the defined concepts, defining then in a single model, system
structure, behavior and data model (rather than MDA and
DSL approaches that need several models). A second step
consisted in the development of a software package, called
SWBPlatform, with Java classes to encapsulate RDF data
manipulation in a high abstraction level set of Java objects.
Common RDF libraries such as Apache Jena were used for
this purpose. With the SWBOntology and the SWBPlatform,
a third step consisted in the development of a code generator
that applies simple transformation rules to generate Java source
code from OWL ontologies.

With the use of the SWBOntology, the SWBPlatform
and the code generator, SWB covers the operational aspects
of Ontology-Driven Development, however, a methodological
approach to manage the entire software development cycle was
defined to cover all aspects of the ODIS ideas. Thus, SWB
provides the following advantages: a) it applies an iterative
methodology to address Ontology-driven software develop-
ment; b) it contains flexible and agile mechanisms to adapt
and extend system development to new business needs; c) it
reduces code maintenance issues and enforces code reuse; d) it
increases the reliability of source code since human errors are
reduced through automatic code generation; e) reasoners can
be run over requirements ontologies and the system run-time
data to make proof of assertions about business information; f)
simple mechanisms can be applied to expose the information
of the developed systems in the Semantic Web and to apply
paradigms such as Linked Data to semantically enrich the
information.

SWB components and methodology have been widely va-
lidated through the development of two Open-source products.
The first one is a Semantic Content Management System for
the creation and management of Web portals, called SWB-
Portal and described in previous sections. The second one
is named SWBProcess4 and is a Semantic Business Process
Management System supporting process modeling, execution
and monitoring in a Web-based environment. Additionally to
these products, several Web applications and systems deployed
in the portals of major Mexican government agencies have
been developed using SWB and SWBPortal. Some examples
are VisitMexico5, the portal of the Secretary of labor and social
welfare6, and the portal of the Secretary of public education7.
In the private sector, it has been used, for example, to build
applications for MedicaSur8.

REFERENCES

[1] B. Hailpern and P. Tarr, “Model-driven development: the good, the bad,
and the ugly,” IBM Syst. J., vol. 45, no. 3, pp. 451–461, Jul. 2006.

[2] OMG, “Model Driven Architecture. Online,” http://www.omg.org/mda/,
2003, last access: 05/09/2013.

[3] M. Bohlen et al. (2012) AndroMDA. http://www.andromda.org/.

4http://www.semanticwebbuilder.org.mx/SWBProcess
5http://www.visitmexico.com/en/
6http://www.sedesol.gob.mx/
7http://www.sep.gob.mx/
8http://www.medicasur.com.mx/

[4] J. Musset et al. (2012) Acceleo. http://www.acceleo.org/.
[5] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser, “Code

generation by model transformation: a case study in transformation
modularity,” Software and System Modeling, vol. 9, no. 3, pp. 375–
402, 2010.

[6] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, pp. 34–43, 2001.

[7] Resource Description Framework (RDF): concepts and abstract
syntax, World Wide Web Consortium Std. [Online]. Available:
http://www.w3.org/TR/rdf-concepts/

[8] Web Ontology Language, World Wide Web Consortium Std. [Online].
Available: http://www.w3.org/2004/OWL/

[9] P. Parrend and B. David, “Use of ontologies as a way to automate
mde processes,” in Computer as a Tool, 2005. EUROCON 2005.The
International Conference on, vol. 1, 2005, pp. 567–570.

[10] H.-J. Happel and S. Seedorf, “Applications of ontologies in software
engineering,” in SWESE’06, Athens, USA, 2006.

[11] M. Uschold, “Ontology-driven information systems: Past, present and
future,” in FOIS’08, 2008, pp. 3–18.

[12] N. K. Dragan Gasevic and M. Milanovic, “Ontologies and software
engineering,” in Handbook of Software Engineering and Knowledge
Engineering: Fundamentals, 1st ed. World Scientific Press, 2009,
vol. 3.

[13] M. Volkel, “RDFReactor - From Ontologies to Programmatic Data
Access,” in Jena User Conference. HP Bristol, May 2006.

[14] A. Kalyanpur, D. J. Pastor, S. Battle, and J. Padget, “Automatic Mapping
of OWL Ontologies into Java,” in Sixteenth International Conference on
Software Engineering and Knowledge Engineering, G. R. Frank Maurer,
Ed., June 2004, pp. 98–103.

[15] B. W. Boehm, “A spiral model of software development and enhance-
ment,” in ACM SigSoft Software Engineering Notes, vol. 2, no. 4, 1986,
pp. 22–42.


