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Abstract: This study developed a method to approximate the covariance matrix associated with the
simulation of water molecular diffusion inside the brain tissue. The computation implements the Dis-
continuous Galerkin method of the diffusion equation. A physically consistent numerical flux is applied
to model the interaction between the axon walls and extracellular regions. This numerical flux yields
an efficient GPU-CUDA implementation. We consider the two-dimensional case of high axon pack
density, valid, for instance, in the brain’s corpus callosum region.
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1. Introduction

Diffusion in complex media is a perennial research topic, whose underlying model is a partial differ-
ential equation (PDE) of parabolic type. Our motivation comes from the simulation of water diffusion
inside the brain tissue (white and grey matter) problem in medical sciences [1].

Simulation of the water diffusion inside the brain tissue is motivated by the analysis of the diffu-
sion magnetic resonance images (dMRI). The diffusion simulation is performed using Monte Carlo
methods [2]. This study provides insightful novel theories on the diffusion properties with analytical
representations [3] and generates useful data for the validation of model fitting [4]. In this problem, the
domain is composed of cell bodies (soma, axons, neurites, glial cells, vessels, etc). Despite some of the
cell structures can be approximated with simple geometries, the domains are geometrically complex.
In particular, the extracellular spaces present arbitrary shapes (similar to a ”gruyere-cheese shape”),
hence numerical approximations are required to simulate the molecular diffusivity.

The approximation of the extracellular diffusivity profile on a disordered model of cylindrical brain
axons, with the diameters computed from a Gamma distribution, is the focus of this study [2]. The
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distribution of diameters has been empirically observed in histological studies on ex vivo samples of
the brain [5].

The extracellular diffusion process is characterized by the corresponding 3D covariance matrix Σ [6]
of a Gaussian Ensemble Average Propagator, i.e., the Spatio–temporal displacement distribution of the
water molecules P(x, t) [7]. The Σ eigenvalues (matched with the corresponding eigenvectors) indicate
the magnitude and orientational dependency, such that, it is possible to infer extracellular microstruc-
ture features like the main orientation of the axon bundles, percentage of the volume occupied by neu-
rons (intracellular signal fraction), amount of diffusion anisotropy of the tissue (fractional anisotropy),
and axial and radial diffusivity. Those descriptors computed from Σ have been correlated with several
brain damage and diseases [1].

In the Diffusion Weighted Magnetic Resonance (DWMR) medical literature, the covariance matrix
is computed using the zeppellin model from the extracellular MR signal, i.e., a limited diffusion tensor
model with two equal eigenvalues [6,8]. The estimated Σ is also used to compute synthetic MR signals
when the Short-Gradient-Pulse approximation is assumed [7].

The approximation of the covariance matrix is essential to correlate its properties to the microstruc-
tural features and their change, respectively, due to, tissue damages associated with brain diseases [1].
The covariance matrix can be obtained from a Gaussian density, which is the average density resulting
from the solution of diffusion equations. We contribute by solving these diffusion equations using an
ad hoc implementation of the Discontinuous Galerkin (DG) method [9].

In applications, the numerical solution of the PDE is part of the research process. This is performed
in tandem, a model is first proposed, then a numerical method for simulation. This work applies the
DG method to accomplish both objectives simultaneously.

Our implementation takes advantage of the underlying physical and geometric properties of the
problem as posed by the clinicians. The so-called substrates are squared pixel domains that allow a
uniform mesh. Also, we suppose that no diffusivity occurs between the axons and the extracellular
region (impermeability) [6]. The usual approximation solves the diffusion equation in the extracellular
region imposing a zero Neumann condition. The numerical fluxes then model the interaction between
the axon walls and the extracellular region. This interaction corresponds to solving the diffusion equa-
tion in the whole domain. Thus, null computations are performed in axons. This redundant strategy
not only circumvents the computationally expensive task, in Galerkin-type methods, of handling the
boundary conditions, but more importantly, it allows the full strength of the DG method, to conduct
the time update of the solution in parallel for all elements. A small ODE problem is solved in each
element with no communication. Consequently, a GPU-CUDA implementation is appropriate.

The actual problem of water diffusion inside the brain tissue is in 3D. We highlight the modeling
and computational features of the DG method. We present computational results only in 2D, but our
theoretical framework will be in 3D. The complex extracellular 2D domains used for our simulations
are from the assumption that intracellular spaces (axons) can be modeled as cylinders such that the
diffusion parallel to the main axon bundle orientation is unhindered, while the study focuses on the
estimation of the diffusion properties perpendicular to the axons [10]. The aforementioned assumption
is a well-known approximation when the axon pack density is high, as in the brain’s corpus callosum
region, and employed in various studies [3, 4]. The outline is as follows:

Section 2 introduces the initial boundary value problem (IVBP) of the diffusion equation associ-
ated with the phenomenon. Next, the basics of the DG method are discussed to present the numerical
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fluxes modeling the interaction between the axons and the intercellular region. Then, the computa-
tional model for GPU-CUDA implementation is described. We complete the methodology with the
scheme for computing the covariance matrix. Section 3 provides two numerical examples of the pro-
posed method. First, the analytical solution of a free diffusion problem is considered to gauge the
introduced DG-CUDA method and a classical Monte Carlo approach. Second, a benchmark type sub-
strate associated with an ex vivo experiment is introduced to test the computational methodology. A
computational comparison using the execution time is also described. We close with conclusions and
a brief discussion on future work in Section 4.

2. Materials and methods

2.1. Water diffusion inside the brain tissue

We model a substrate occupying a domain (medium) comprised of two regions, the axons, and
extracellular complement. The former is nondiffusive and the latter a diffusive region. We assume
that the boundary between both regions is reflecting. Initial pulses are prescribed in the extracellular
region, far away from the outer boundary which is modeled as a perfect absorber.

Let Ω be the domain occupied by the substrate. This domain is the union of two intertwined adjacent
regions, Ωa and Ωe representing the axon and extracellular regions, respectively.

The IVBP consists of finding u that solves the diffusion equation

∂u
∂t

= ∇ · (k(x)∇u) , (x, t) ∈ Ωe × (0,T ), (2.1)

given Cauchy data
u(x, 0) = u0(x), x ∈ Ωe, (2.2)

and boundary values
∂u
∂n

= 0, (x, t) ∈ ∂Ωe × (0,T ), (2.3)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ). (2.4)

Here n is the outer unit normal to Ωe.
The Neumann boundary condition (2.3) corresponds to a reflecting boundary, whereas the Dirichlet

boundary condition (2.4) to that of a perfect barrier.
The discontinuous diffusion is given by

k(x) =


0, x ∈ Ωa

k0, x ∈ Ωe

(2.5)

for a positive constant k0.

2.2. Numerical Flux and the Discontinuous Galerkin method

2.2.1. The Discontinuous Galerkin method

Let Ωe be partitioned into nonoverlapping polygonal elements, e.g. a triangulation. Denote by
K ≡ K−, one of such elements, see Figure 1.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 4961–4970.



4964

e- n-

Figure 1. Integration element and its normal.

A striking characteristic of the DG method is that it reduces the PDE to a first-order system. Con-
sequently, consider q = ∇u

∂u
∂t = ∇ · (kq) .

(2.6)

Multiplying (2.6) by the test functions v = (v1, v2), and v, we obtain after integrating by parts,

∫
K−

q · vdx =

∫
K−

(∇u) · vdx

=

∫
∂K−

v · (un)ds −
∫

K−
u∇ · vdx

∫
K−

utvdx =

∫
K−
∇ · (kq)vdx

=

∫
∂K−

v(kq · n)ds −
∫

K−
kq · ∇vdx

Continuity is not enforced at the boundary of adjacent elements. Therefore, the boundary terms
u, kq are replaced with boundary numerical fluxes u∗ ≡ u∗(u−, u+), (kq)∗ ≡ (kq)∗(k−,q−, k+,q+). As
customary, the − superscript denotes limits from the interior of K−, and the + superscript, limits from
the exterior.

This yields in element K−∫
K−

q · vdx =
∫
∂K−

v · (u∗n−)ds −
∫

K−
u · ∇vdx∫

K−
utvdx =

∫
∂K−

v(kq)∗ · n−ds −
∫

K−
kq∇ · vdx

(2.7)

These numerical fluxes chosen below model the underlying physical phenomena.

Another characteristic of the DG method, is the element-wise approximation of the unknown q and
u.
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Suppose w is an approximation of any scalar functions q1, q2, u. Then, the approximation within
K− is given by

w(x, t) =

p∑
j=0

w j(t)N j(x). (2.8)

For a triangulation, choosing the functions N j follows the Finite Element Method with Lagrangian
interpolation.

We assume that u+ and q+ are known in (2.7). Hence, we solve a differential-algebraic system for
u− and q−. The solution in time is advanced by a Runge-Kutta method.

Remark. The solution of the p+1 differential-algebraic system (2.7), is solved independently for each
element. In practice p ≤ 3 suffices. Thus, we have small systems, that do not exchange information on
each time step, to solve.

2.2.2. The numerical fluxes for water diffusion

No preferred direction of propagation in diffusion phenomena exists, thus for u, a central flux is
considered, namely,

u∗ =
u− + u+

2
.

A physical assumption is that there is no flow between axons and the extracellular region. Conse-
quently, for q, we propose the numerical flow

(kq)∗ =
2k−k+

(k−)2 + (k+)2

1
2

(q− + q+).

This is coined for the problem under consideration. If k− > 0 and k+ = 0, the harmonic mean forces
a zero Neumann condition, hence there is no flow trough the boundary of the element K− as required.

2.3. CUDA implementation

The meshing is time-consuming in Galerkin-type methods, as it is boundary conditions handling
when assembling the local systems. Here, the domain is divided into square pixels. For meshing, we
consider the simplest triangular mesh by separating these squares through the diagonals.

Also in this MRI application, the heat equation is solved in the extracellular region Ωe with Cauchy
conditions. No consideration is given to the axon region, Ωa. Nevertheless, we solve the heat equation
in elements contained in Ωa where the contribution to the solution is null.

We balance computations on every element. From the remark above, the calculations in (2.7) are
element-independent when updating the time. Consequently, the main ingredients for parallel process-
ing using GPUs are met and include small balanced computations with no exchange of information
between processors.

Mathematical Biosciences and Engineering Volume 18, Issue 5, 4961–4970.



4966

2.4. The covariance matrix scheme

Let (xi, yi) ∈ Ωe, i = 1, 2, . . . ,m randomly and uniformly in Ωe. Set a final time T .

• For i = 1, 2, . . . ,m, let Ui(x, y,T ) be the solution of the IVBP (2.1)−(2.4), where the Cauchy
condition is the Dirac delta function supported in (xi, yi).
• For i = 1, 2, . . . ,m, let ui(x, y,T ) be obtained from Ui(x, y,T ) by centering and normalization to

yield a density function.
• Construct the mixture model given as

u(x, y) =
1
m

m∑
i=1

ui(x, y,T ).

• Fit a Gaussian density to u. That is, determine a covariance matrix Σ, such that

u(x, y; Σ) ≈
1

2π
√
|Σ|

exp
(
−

1
2

[
((x, y) − (µx, µy))T Σ−1((x, y) − (µx, µy))

])
,

The covariance matrix is given by,

Σ =

(
E[(X − µx)(X − µx)] E[(X − µx)(Y − µy)]
E[(Y − µy)(X − µx)] E[(Y − µy)(Y − µy)]

)
.

It is computed by quadrature rules using ui j, the values of the numerical solution at the nodes (xi, y j)
in the mesh.

3. Numerical results

3.1. Free diffusion

In this example, we solve the heat equation with the Cauchy condition as the Dirac delta supported
at the origin. The uniform diffusion coefficient is k0 = 450µm/s2.

We compare the free diffusion approximation (without axons), versus the analytical solution. The
latter is a bivariate Gaussian function f (x, y; Σ) defined in (2.4), and the covariance matrix is

Σ =

(
2Tk 0

0 2Tk

)
.

Taking k = 450µm/s2 and T = 0.036s, the non-zero coefficients in the covariance matrix are equal
to 32.4.

Graphical results are shown in Figure 2. The DG-CUDA Gaussian matrix fit for 400 × 400 is(
32.53 0.00038

0.00038 32.53

)
An alternative construction of the covariance matrix is using Monte Carlo diffusion simulation [2].

We give the list of the corresponding data in their notation.
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Figure 2. Left: DG-CUDA free diffusion. Right: 1D view.

Diffusion constant D = 4.5e − 10, ts = 0.036 duration of the diffusion simulation. T = 5000 is the
number of time steps in the simulation. The step length l is obtained using the relation

l =

√
4

Dts

T
≈ 0.11µm.

The obtained MC Gaussian matrix is(
32.487358329 −0.075889940
−0.075889940 32.378282498

)
Remark. To gauge the approximations we compute the least squares residual∑

i

∑
j

[u(xi, yi; Σ) − ui j]2. (3.1)

In both cases, the approximation of the Gaussian function is accurate. The least squares residual
(3.1) is of the order O(10−8). In practice, the Gaussian density functions coincide. However, the DG-
CUDA approximation is structurally more consistent. The matrix is symmetric, the diagonal values
coincide and the other terms are two orders of magnitude smaller than those obtained from MC.

3.2. A case study

We consider a substrate consisting of 1901 nonoverlapping circles, which represent the axons, and
consider the regions only within a square, the domain Ω, that measures 50µm on the side (Figure 3).
The radius of the circles ranges from 0.150 µm to 1.141 µm. The extracellular region is the exterior of
the circles and the diffusion coefficient is set to k0 = 450µm/s2.

The ex vivo coefficient oscillates between 450 and 600, depending on the temperature and substance
of the medium [11]. The smaller substrate is used.

The substrate under study occupies a square domain of side 50 µm. Cauchy condition is given
within a centered box of side 20 µm and observation time t = 0.036s. At this given time, the outer
boundary is not reached by diffusion. In all cases, a square grid of K × L ≡ 400 × 400 mesh is used.

The axon region Ωa is defined by 1901 axons. The diffusion coefficient as in (2.5). The scheme
above is applied to a mixture of m = 37 densities. We show one PDE solution in Figure 4.
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Figure 3. The substrate consists of 1901 nonoverlapping circles.

The covariance matrix by the DG-CUDA algorithm is(
19.50 −0.0088
−0.0088 19.50

)
and the corresponden one obtained MC Gaussian matrix is(

19.59 0.027
0.027 19.50

)
where the relative error between entries is smaller than 0.5%.

Remark. The choice of the sample size, m, for the Gaussian mixture is heuristic. From our experi-
ments, m need not be large. In two dimensions O(10) will suffice.

3.3. Computational efficiency

We summarize the execution time in the following table

K × L Time stps No. Deltas CPU GPU
400×400 5184 1 6585.47 sec. 5.13649 sec.
400 ×400 5184 37 21877.252 sec. 188.597 sec.

Regardless of the diffusion coefficient, the GPU processing is more than 1000 times faster for the
solution of the heat equation with a single delta as Cauchy condition.
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Figure 4. Left: One PDE solution. Right: Normalized and centered solution for one PDE.

For the prototype computation, we implement parallel processing using GPUs in the CUDA lan-
guage of a DELL laptop with hardware:
CPU: Intel(R) Core(TM) i7-6820HQ CPU @ 2.70 GHz
GPU: NVIDIA Corporation GM107GLM [Quadro M1000M]

4. Conclusions

This study proposed a methodology for the efficient computation of the covariance matrix associated
with the extracellular diffusivity profile on a disordered model of cylindrical brain axons. The method-
ology relies on two strategies; introducing physical numerical fluxes in the Discontinuous Galerkin
method and null computations on the axon region for straightforward GPU implementation.

We present satisfactory results on two-dimensional examples that show the proposed methodol-
ogy outperforms sequential implementations and is more structurally consistent than a Monte Carlo
approach.

Presently, we are working toward extending our methodology to the three-dimensional case. We
contend that our methodology can include the corresponding complexities in a 3D extension. We
mention that the choice of the sample size, m, for the Gaussian mixture is heuristic and as such, an
in-depth analysis is required. These issues make up our current and future work.
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