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Abstract: This article presents a comparison of wind speed forecasting techniques, starting with the
Auto-regressive Integrated Moving Average, followed by Artificial Intelligence-based techniques.
The objective of this article is to compare these methods and provide readers with an idea of what
method(s) to apply to solve their forecasting needs. The Artificial Intelligence-based techniques
included in the comparison are Nearest Neighbors (the original method, and a version tuned by
Differential Evolution), Fuzzy Forecasting, Artificial Neural Networks (designed and tuned by
Genetic Algorithms), and Genetic Programming. These techniques were tested against twenty wind
speed time series, obtained from Russian and Mexican weather stations, predicting the wind speed
for 10 days, one day at a time. The results show that Nearest Neighbors using Differential Evolution
outperforms the other methods. An idea this article delivers to the reader is: what part of the history
of the time series to use as input to a forecaster? This question is answered by the reconstruction of
phase space. Reconstruction methods approximate the phase space from the available data, yielding
m (the system’s dimension) and τ (the sub-sampling constant), which can be used to determine the
input for the different forecasting methods.

Keywords: time series forecasting; wind speed forecasting; machine learning

1. Introduction

The world’s population growth has taken the planet to unsustainable levels of pollution, mainly
caused by the industrialization of the developing world. To solve this problem we need technological
changes; aiming to solve this problem, humans have developed alternative ways of producing electrical
and mechanical power, to be used in the industry. One direction where these sort of policies can be
applied is to alternative sources of electrical energy, ones that limit carbon emissions [1].

In this direction, one of the most important renewable, less polluting, sources of electrical energy
is wind energy. One of the problems in using this energy is its incorporation into the electrical network,
due to the intermittency [2,3] and the difficult controllability of the main power source, turbulent
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wind [4]. On the other hand, the amount of energy produced by wind power is a function of the wind
speed. The challenge is to integrate this intermittent power source into the electricity grid.

We find two main streams of work in the literature regarding wind speed forecasting. One is
the meteorology (or physical) approach to model and predict the state of the atmosphere [5–7].
This approach is based on the spatial (i.e., geographical) distribution of the wind features. Those
models take into consideration factors like shelter from obstacles, local surface roughness, effects of
orography, wind speed change and scaling, etc. (see [8,9]). Those works, mainly based on partial
differential equations (PDE), were developed since the early 50’s; J. Charney called those PDE Primitive
Equations [10].

The other main stream of work is based on what has been defined as Time Series Analysis.
This stream of work was initiated by Yule [11], Slutsky [12], and Wold [13], and made popular by Box
and Jenkins [14]. A time series is a series of data points (commonly expressing the magnitude of a
scalar variable) indexed in time order. A time series is a discrete sequence taken at successive equally
spaced points in time.

Within the area of Time Series Analysis, there is plenty of work based on statistics, and more
recently, based on artificial intelligence and machine learning techniques. Techniques like
Artificial Neural Networks [15–18], Support Vector Machines [19–22], Nearest Neighbors [23,24],
Fuzzy Systems [25–28], and recently Deep Learning [29,30], have been used to model and forecast
Time Series.

The study of probabilistic forecasting methods is also an important research of interest that would
allow to implement wind forecasting methods in real energy production market scenarios [31]. It could
provide useful information to decision-making to maximize the rentability of wind power production,
e.g., information about the future error probability distribution to know the risk of bidding certain
power output. Zhang et al. [31] classifies the probabilistic approaches in three categories according to
the uncertainty representation: probabilistic (e.g., [4,32,33]), risk index (e.g., [34,35]), and space time
scenario forecasts [36–38].

One contribution of this article is to present a performance comparison of Time Series forecasting
techniques using Statistical and Artificial Intelligence methods. The methods included in this study
were tested and their performances compared using two data sets, 10 Russian time series and 10 data
sets from a network of weather stations located in the state of Michoacan, Mexico. The forecasting
horizon used in the experiments was to predict the wind speed one day ahead for 10 days, using those
time series. Note that methods that won with this data sets under this forecasting scenario may not be
the winners using a different data set or forecasting horizon.

We compare one of the simplest non-linear forecasting models (NN—Nearest Neighbors), with its
equivalent statistical counterpart such as ARIMA (AutoRegressive Integrated Moving Average). Based
on experimental results, we show that the simple Non-linear model outperforms the statistical model
ARIMA when we compare forecast accuracy for non-linear time series. Taking NN as the base model,
we report the accuracy of a set of NN based models composed by a deterministic version of NN.
We present a non-deterministic version (NNDE—Nearest Neighbors using Differential Evolution),
that uses the Differential Evolution Algorithm to find the optimum time lag, τ, embedding dimension,
m, and neighborhood radius size, ε, that produce the minimum forecasting error. Fuzzy Forecast (FF),
which can be considered as a kind of Fuzzy NN, produces forecasts using fuzzy rules applied to the
delay vectors. ANN-cGA (Artificial Neural Network using Compact Genetic Algorithms) evolves
the architecture of ANN’s to minimize the forecasting error. As part of the evolved architecture, it
determines the relevant inputs to the neural network forecaster. The input selection is closely related
to the phase space reconstruction process. Finally, Evolving Directed Acyclic Graph (EvoDAG) evolves
forecasting functions that take as arguments part of the history of the time series.

A second contribution of this article is the use of phase space reconstruction to determine the
important inputs to the forecasting models. Phase space reconstruction determines the sub-sampling
interval or time delay, τ, and the system dimension, m, using mutual information and false nearest
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neighbors, respectively; these parameters are used to produce the characteristic vectors known as
delay vectors. These delay vectors are the input to the different models presented in this article.

When reviewing the literature, there are differences in the ranges of the time scale between
different works. For example, Soman et al. [39] use the term very short term to denote forecasting for a
few seconds to 30 min in advance, short-term for 30 min up to 6 h ahead, medium-term for 6 h to one
day ahead, and long-term from 1 day to a week ahead. According to their classification, this article
addresses medium- and long-term forecasting; applications for these time scales, according to Soman
et al., include generator online/offline decisions, operational security in day-ahead electricity market,
unit commitment decisions, reserve requirements decisions, and maintenance and optimal operational
cost, among others. They also present a study of different methods applied to different time scales;
according to their work they conclude that statistical approaches and hybrid methods are “very useful
and accurate” for medium- and long-term forecast. Therefore a performance comparison between AI
methods for this particular forecast horizon offers guidance for the practitioners of the field.

The rest of the article is organized as follows: Section 2 provides a brief analysis of the state of
the art in time series analysis using the methods included in this study. Section 3.2, describes the
forecasting techniques used in the comparative analysis presented here. Section 4 describes the data
sets used in the comparative analysis, the experimental setup, and the results of the comparison.
Finally, Section 5 draws this empirical study conclusions.

2. Related Work

The study and understanding of wind speed dynamics for prediction purposes affects the
performance of wind power power generation. Wind speed dynamics present a high level of potential
harmful uncertainty to the efficiency of energy dispatch and management. Therefore, one of the biggest
goals in wind speed forecasting is to reduce and manage the uncertainty with accurate models with
the aim of increasing added value to the wind power generation.

Nevertheless, wind speed prediction is difficult to perform accurately and requires more than
the traditional linear correlation-based models (i.e., Auto-Regressive Integrating Moving Average).
Wind speed dynamics presents both strong chaotic and random components [40], which must be
modeled and explained from the non-linear dynamics perspective. We found in the literature a diverse
collection of wind power and speed forecasting models to meet the requirements predicting at specific
time horizons.

The work of Wang et al. [2] is a comprehensive survey that organizes the forecasting models
according to prediction horizons, e.g., immediate short time (8-h ahead), short term (one-day ahead),
and long term (greater than one-day ahead).

L. Bramer states [41] that for short term forecasting horizons (from 1 to 3 h ahead), statistical
models are more suitable than other kinds of models. In contrast, for longer horizons, the alternative
methods perform better than the pure statistical models. Our forecasting horizon (one day ahead) calls
for other methods, capable to produce forecasts deeper than that into the future. That is the reason to
use AI-based techniques.

Okumus and Dinler [42] present a comprehensive review where they cite an important number
of wind power and speed forecasting models, compared by standard error measures and length of the
prediction horizon. The paper compares ANFIS, ANN, and ANFIS+ANN model, presenting better
performance improving by 5% on average. The hybrid model presents a MAPE improvement of 25%
for 24-h step ahead forecasts. Table 1 of Okumus et al.’s article provides errors obtained in the works
included in their survey; unfortunately, those errors are reported for different forecasting tasks, using
different error metrics. Under those conditions we cannot really compare the performance of the
methods we present in this article with those presented in the articles included in the survey. It is
not even clear to us the main characteristics of the data they use (e.g., sampling period, time series
length, etc.); we do not know how complex the data is in those examples and forecasting accuracy
depends on those factors.
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Another multivariate model is proposed by Cadenas et al. [43] for one step ahead forecasting,
using Nonlinear Auto-regressive Exogenous Artificial Neural Networks (NARX). The NARX model
considers meteorological variables such as wind speed, wind direction, solar radiation, atmospheric
pressure, air temperature, and relative humidity. The model is compared against Auto-regressive
Integrated Moving Average (ARIMA) model; NARX reports a precision improvement between 5.5%
and 10%, and 12.8% for one-hour and ten-minute sample period time series.

Croonenbroeck and Ambach [44] compare and analyze the effectiveness of WPPT (Wind Power
Prediction Tool) with GWPPT (Generalized Wind Power Prediction Tool) using wind power data
of 4 wind turbines located in Denmark. WPPT is also compared with Non-parametric Kernel
Regression, Mycielsky’s Algorithm [45], Auto-regressive (AR), and Vector Auto-regressive (VAR).
Their experiments were performed with one and 72-step (12 h) ahead forecasting horizons with a
sampling period of 10 min.

Jiang et al. [46], present a one-day ahead wind power forecasting using a hybrid method based on
the combination of the enhanced boosting algorithm and ARMA (ARMA-MS). An ARMA model is
selected with parameters p = 1 and q = 1 for the AR and MA components, respectively. The ARMA-MS
algorithm is based on the weighed combination of several ARMA forecasters. ARMA-MS is tested
with wind power data from the east coast of the Jiangsu Province.

Despite the plethora of algorithms and models to forecast wind speed, the authors found few
articles using non-linear time series theory [47,48]. Non-linear time series theory is useful to identify
the structure and attractors, and predict time series with non-linear and potential chaotic behavior. An
example is the Simple Non-Linear Forecasting Model based on Nearest Neighbors (NN) proposed by
H. Kantz [23].

Previous experimental results with synthetic chaotic time series [49], indicate that using basic
principles to reconstruct the non-linear time series in phase space, perform far better predictions than
the basic statistic principles. They show that the prediction quality can be improved even more by
using Differential Evolution.

3. Materials and Methods

This section describes the data sets used to test the forecasting methods presented in this article.
Several forecasting techniques (developed by the authors) were selected to solve the wind speed
forecasting problem. Those forecasting methods are then presented in the second subsection. Section 4
presents a comparative analysis of those forecasting techniques; the study was designed to be as
exhaustive as possible.

3.1. Data Sets

The methods included in this study were tested and their performances compared using two
data sets: a selection of 10 stations from the compilation “Six- and Three-Hourly Meteorological
Observations from 223 Former U.S.S.R. Stations (NDP-048)” [50], and 10 are a subset of the network
of weather stations located in the state of Michoacan, Mexico [51]. Every data set contains wind
speed measurements collected at a height of 10 m. Russian time series are sampled at 3-h periods and
Mexican time series are sampled every hour.

The forecasting horizon used in the experiments was to predict the wind speed one day ahead
for 10 days, using those time series. Since we are forecasting for 10 days, the last 10 days of measures
of each data set were saved in the validation set; the rest of the data was used as a training set.
The number of samples used for training varied depending on the time series, ranging from 875 to
25,000 samples, while the length of the validation sets were 80 and 240 for the Russian and Mexican
time series, respectively.

Figure 1 presents an example of the Mexican time series. For the sake of clarity, only a subset of
the time series has been plotted. Given the range of wind speeds in the malpais area, it is clear that the
time series presents an outlier near the end of the plotted data, where it goes well beyond 20 m/s.
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Figure 1. Segment of the Malpais Time Series.

These data sets were selected since they present different problems encountered in non-synthetic
experimentation, most importantly: noise, outliers, data precision, and missing values. In the particular
case of the Russian stations, wind speed is measured as integers with no decimals, which adds a layer
of noise since the data lacks granularity. The Mexican stations have one decimal digit.

While there are practically no missing values in the Russian data sets, the Mexican data sets
lack several values. Because of this, some adjustments to train the forecasters and measure their
performance were necessary. Those adjustments are described in Section 4.4.

Also, mostly in the Mexican data sets, some outliers were identified, both in the training and
validation sets of some stations. As with the missing values, a few adequations were implemented in
the forecasters to correctly treat these data sets.

The data and supplementary material is found at https://github.com/JRCGonzalez/Wind-
Forecasting. The code for EvoDAG is provided at https://github.com/mgraffg/EvoDAG. The code
for Fuzzy Forecasting is not provided because we are in the process of publishing additional results.

3.2. Forecasting Techniques

This section describes the techniques used in the performance comparison, presenting the
equations and algorithms that composes them. Auto-Regressive Integrated Moving Average and
Nearest Neighbors are well known forecasting techniques, while Nearest Neighbors with Differential
Evolution Parameter Optimization, Artificial Neural Network with Compact Genetic Algorithm
Optimization, Fuzzy Forecasting, and EvoDAG are the authors’ recent contributions to the state of
the art.

3.2.1. Auto-Regressive Integrated Moving Average

In time series statistical analysis, the Auto-Regressive Moving Average models (ARMA) describes
a (weakly) stationary stochastic process in terms of two polynomials. The Auto-Regressive Integrated
Moving Average models (ARIMA), are a generalization of ARMA models. These models fit
to time series data to obtain insights of the data or to forecast future data points in the series.
In some cases, these models are applied to data where there is evidence of non-stationarity (this is,
where the joint probability distribution of the process is time variant).In those cases, an initial
differentiation step (which corresponds to the integrated part of the model) can be applied to reduce
the non-stationarity [13].

https://github.com/JRCGonzalez/Wind-Forecasting
https://github.com/JRCGonzalez/Wind-Forecasting
https://github.com/mgraffg/EvoDAG
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Much empirical time series behave as if they did not have a bounded mean. Yet, they exhibit
homogeneity in the sense that, parts of the time series are similar to other parts in different time lapses.
The models that serve to identify non-stationary behavior can be obtained by applying adequate
differences on the time series. An important class of models for which the d-th difference is a mixed
stationary auto-regressive moving average process is called the ARIMA models.

The non-stationary ARIMA models are described as ARIMA (p, d, q), where p, d, and q are
non-negative integer parameters; p is the order of the auto-regressive model, d is the differentiation
degree, and q is the order of the moving average model [52].

Let us define the time lag operator B such that, when applied to a time series element, it produces
the previous element. I.e., Bst = st−1. It is possible to call a time series S = [s1, s2, . . . , st, . . . , sN ]

homogeneous, non-stationary. If it is not stationary, but its first difference, wt = st − st−1 = (1− B)st,
or any high-order differences wt = (1− B)dst produces a stationary time series, then S can be modeled
by an Auto-Regressive Integrated Moving Average process (ARIMA).

Hence, an ARIMA(p, d, q) model can be written as in Equation (1)

Φ(B)(1− B)dst = δ + Θ(B)εt (1)

where δ is an independent term (a constant), Φ(B) and Θ(B) are polynomials on B, st is the time series
at time t, and εt is the error at time t.

After differentiation, which produces a new stationary time series, this results in an auto-regressive
moving average model ARMA, which has the form shown in Equation (2), which can be expressed
using polynomials of the lag operator, B, as shown in Equation (3)

st = δ + φ1st−1 + φ2st−2 + . . . + φpst−p + εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q

= δ +
p

∑
i=1

φist−1 + εi −
q

∑
i=1

θiεt−i
(2)

Φ(B)st = δ + Θ(B)εt (3)

where φi and θi are the coefficients of the polynomials Φ and Θ.

3.2.2. Nearest Neighbors with Differential Evolution Parameter Optimization

Let S = {s1, s2, . . . , st, . . . , sN} be a time series, where st is the value of variable s at time t. It is
desired to obtain the forecast of ∆n consecutive values, {sN+1, sN+2, . . . , sN+∆n} by employing any
observation available in S.

By using a τ delay and an embedding dimension m, it is possible to build delay vectors of the
form St = [st−(m−1)τ , st−(m−2)τ , . . . , st−τ , st], where m > 0 and τ > 0. The nearest neighbors are those
St whose distance to SN is at most ε.

For each vector St that satisfies Equation (4), the individual values st+∆n are retrieved.

|SN − St| ∀t ∈ [m, N − 1] (4)

Each of these vectors form the neighborhood υr(SN) with radius r around the point SN . It is
possible to use any vector distance function to measure the distance between possible neighbors.

The forecast is the mean of the values st+∆n of every delay vector near SN , expressed in
Equation (5).

ŜN+∆n =
1

| υr(SN) | ∑
St∈υr(SN)

st+∆n (5)
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The Nearest Neighbors algorithm requires that its parameters are fine tuned so it can produce
accurate forecasts. Differential Evolution contributes to obtain the best parameters given an specific
fitness function. This hybrid method that combines Nearest Neighbors with Differential Evolution is
called NNDE [49].

What it does is, for a stochastically generated population of individuals, each of which is encoded
by a vector [m, τ, r], a forecast is obtained for the given time series. Then, the forecasts are compared
to the validation set of the time series with an error measure such as MAPE or MSE. The result is the
fitness of each individual set of parameters, and the individual with the lowest fitness is the one used
to evolve the population. Once this process is completed, the individual with the overall lowest error is
retrieved and becomes the set of parameters to use to produce forecasts for that particular time series.

3.2.3. Fuzzy Forecasting

Fuzzy Forecasting (FF) learns a set of Fuzzy Rules (FR) designed to predict a time series behavior.
FF traverses the time series analyzing contiguous windows with its next observations and formulating
a rule from each one of them. Those rules take the form of Equation (6).

If Xn−mτ is A0 ∧ Xn−(m−1)τ is A1 ∧ · · · ∧ Xn−τ is Am−1 ∧ Xn is Am

then Xn+1 is Am+1 (6)

where m and τ are the embedding parameters, and Ai are the Fuzzy Linguistic Terms (FLTs).
The FLTs are formed by dividing the time series range into overlapping intervals. By producing

a higher number of FLTs, the resulting forecaster is more precise. On the other hand, the process of
learning the FR is more expensive (time-wise). The FLTs overlap just enough so that every real value
belongs to at least one FLT (i.e., at least one membership function is not zero). An FR (see Equation (6))
represents the behavior of the time series in the time window where the FR is extracted from. The FR
is a low resolution version of the information contained in the time series window.

Figure 2 illustrates a delay window of a time series. The magnitudes in the time series chosen
for this example range from 6 to 44. That range was evenly split to produce 5 overlapping FLTs,
running along the vertical axis. The first 4 points of that delay window form the antecedents, and
the last one constitutes the consequent of the produced FR. Assuming m = 4, τ = 1, and that the
rule will be applied at time t, the produced FR has the form If Xt−3 is LT1 ∧ Xt−2 is LT1 ∧ Xt−1 is LT4 ∧
Xt is LT2 then Xt+1 is LT0.

Figure 2. Part of a time series and corresponding fuzzy values.

Fuzzy Forecasting has two phases: Learning and forecasting. The first phase learns the FR set
from the time series. Figure 3 shows a flow chart of the learning algorithm. Function LearnRules takes
X, a time series, m, and τ, and returns the FR set learned from X.

LearnRules has three main parts, shown in each of the columns in Figure 3. First, X is traversed
using a sliding window, looking for patterns contained in the time series. Those sliding windows
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(W) have size m with delay τ; each window is fuzzified and added to the list of Linguistic Terms,
LTS. In the second part, those rules are traversed again, gathering them by the fuzzy form of the rule.
The rules are stored in a dictionary H of rules and their strengths. Finally, all collected rules of the
same form are compiled into a single one, with the strength of the average of the set. The compiled
(learned) set of rules is returned.

 
Start 

Are there  
more Ws? 

LTS = {} 

For each W in X 

LTS = LTS U 
Fuzzify(w) 

Are there  
more Rules? 

H = {} 

For each (Rule, Strength) 
in X 

H(Rule) = H(Rule) 
U (Rule, Strength) 

Are there  
more keys? 

Rules = {} 

For each r in keys(H) 

Str = AvgStrength(H(r)) 
Rules = Rules U (r, Str) 

Return Rules 

Figure 3. LearnRules (X, m, τ).

The second phase of Fuzzy Forecasting is the production of the forecasts, based on the current
observation and the set of fuzzy rules produced by the learning phase. Given a FR set, forecasting uses
a fuzzy version of the current state of the time series, and sends this fuzzy state to the FR to produce
the predicted value. In the forecasting process, more than one rule may fire; in those cases, the result
(i.e., the forecast) is defuzzified using the center of gravity method. Figure 4 shows a flow chart of the
forecasting algorithm. FuzzyForecasting produces one forecasted value, computed from the set of
fuzzy rules and the delay vector formed by the last observations.

 
Start 

Are there  
more Ws? 

Fired = {} 

For each Rule in FR 

µ=Satisfies(X, Rule) 

Fired = Fired U 
Consequent(Rule, µ) 

 

Return COG(Fired) 

µ > 0? 

Figure 4. FuzzyForecasting (fuzzy rules (FR), X, m).
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FuzzyForecasting takes the FR set, the time series, X, and the window size m. The Loop traverses
FR, verifying if the fuzzy current state satisfies each fuzzy rule. When the fuzzy current state satisfies
the antecedents of a rule, we say it fires. The membership of the conjunction of the memberships of the
antecedents is called the rule fire strength. When a rule fires, its consequent and the firing strength
are recorded in the list Fired. When all rules were traversed the fired rules’ strength is combined and
defuzzified using the Center of Gravity method. The defuzzufied value, which represents the forecast
value, is returned.

3.2.4. Artificial Neural Network (ANN) with Compact Genetic Algorithm Optimization

ANNs are inspired are inspired by the functioning of the human brain. They have the capacity to
model a non-linear relationship between input features and expected output. The ANN used in this
work is a multi layer perceptron (MLP) with three layers. The first layer receives the inputs (m past
observations), the hidden layer (one or more) which are the processing layers, and an output layer
(the forecast). A sigmoid function is used as an activation function (as observed in Figure 5) [53].

A correct training process may result in a Neural Network Model that predicts an output value,
classify an object, approximate a function, or complete a known pattern [54].

The ANN architecture used to forecast is defined by a compact Genetic Algorithm (cGA). The cGA
algorithm and the chromosome description are shown in the work of Rodriguez et al. [55].

Figure 5. Artificial Neural Network (ANN) topology which starts with the input layer (m past
observations), continues with the hidden layer (h hidden neurons), and ends with an output layer
(a single output ŷt+1). For general Artificial Neural Network terminology, see [54].

3.2.5. EvoDAG

EvoDAG [56,57] is a Genetic Programming (GP) system designed to work on supervised learning
problems. It employs a steady-state evolution with tournament selection of size 2. GP is an evolutionary
search heuristic with the particular feature that its search in a program space. That is, the solutions
obtained by GP are problems; however, EvoDAG restricts this search space to functions. The search
space is obtained by composing elements from two sets: the terminal set and the function set.
The terminal set contains the inputs and, traditionally, an ephemeral random constant. On the
other hand, the function set includes operations related to solve the problem. In the case of EvoDAG,
this set is composed by arithmetic, transcendental, trigonometric functions, among others.

EvoDAG uses a bottom-up approach in its search procedure. It starts by considering only the
inputs, and then these inputs are joined with functions of the function set, creating individuals
composed by one function and their respective inputs. Then these individuals are the inputs of a
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function in the functions set, creating offspring which will be the inputs of another function and so on.
The evolution continues until the stopping criteria are met.

Each individual is associated with a set of constants that are optimized using ordinary least
squares (OLS), even the inputs are associated with a constant. For example, let x1 be the first input
in the terminal set, then the first individual created would be αx1 where α is calculated using OLS.
In order to depict the process of creating an individual using a function of the function set, let α1x1

and α2x2 be two individuals and be the addition the function selected from the function set, then the
offspring is α3α1x1 + α4α2x2 where α3 and α4 are obtained using OLS.

EvoDAG uses as stopping criteria early stopping, which employs part of the training set as a
validation set. The validation set is used to measure the fitness of all the individuals created, and
the evolution stops when the best fitness in the validation set has not been improved for several
evaluations, using by default 4000. Specifically, EvoDAG splits the training set in two; the first one
acts as the training set and the second as the validation set. The training set guides the evolution
and is used to optimize the constants in the individuals. Finally, the model, i.e., the forecaster, is the
individual that obtained the best fitness in the validation set.

EvoDAG is a stochastic procedure having as a consequence high variance. In order to reduce the
variance, it was decided to create an ensemble of forecasters using bagging. Bagging is implemented
considering that the training set is split in two to perform early stopping; thus, it is only necessary to
perform different splits, and for each one, a model is created. The final prediction is the median of
each model’s prediction.

4. Results

With the techniques described in Section 3.2, two experiments based on the same forecasting
scenario were tested. In this section we discuss the performance of the forecasters measured by the
Symmetric Mean Average Percentage Error.

4.1. Auto-Correlation Analysis of the Data Sets

To identify periodicity in a time series it is necessary to analyze its auto-correlation plot.
The Auto-Correlation Function (ACF) is the correlation of a signal (in this case a time series) with a
delayed copy of itself. The ACF plot shows ACF as a function of delay.

Since some of the data sets are missing a few samples, it was necessary to identify the longest
sequences without missing values, in order to calculate the dominant Lyapunov exponents. For brevity,
only the auto-correlation and partial auto-correlation graphs for the time series 24908 and lapiedad are
shown in Figures 6 and 7, respectively.
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Figure 6. Auto-Correlation Function (ACF) and partial ACF (PACF) for 24908.
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(a) ACF for lapiedad
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Figure 7. ACF and PACF of lapiedad.

In the plots, the x-axis represents the time lag, and the y-axis shows the auto-correlation coefficient
and the partial auto-correlation coefficient for the ACF and PACF figures, respectively. The definitions
of ACF and PACF are described in [52]. In every plot there is an increased auto-correlation every 8 and
24 lags for the Russian and Michoacán stations, respectively. Many time lags exhibit auto-correlation
values that exceed the 5% significance threshold; this fact indicates that the null hypothesis that there
is no correlation for those time lags can be rejected.

4.2. Lyapunov Dominant Exponent Analysis of the Data Sets

Wind speed has been identified as a chaotic or as a non linear system [58–61]. To test these
assertions we estimated the dominant Lyapunov exponents of the data sets used in this work.

To obtain the Lyapunov exponents we used an implementation of the algorithm described
in [62]. Although there exist different ways to estimate the exponents (such as the ones described
in [23,63], or [64]), we decided to use Rosenstein et al.’s implementation, since it is the more consistent
in interpretation of the resulting exponent. Although it is desirable to use as much data as possible to
obtain the exponents, only 1000 data points were used, in order to minimize the time consumed in this
task. The Lyapunov exponents of the time series are shown in Table 1, which includes the Lyapunov
exponents of two time series, the Logistic Map [65] and the Sine function. The table columns include
the Time Series and the minimum, maximum, and average Lyapunov Exponents.

The calculated exponents are not as high as we expected, which indicates that wind speed is not
dominated by noise. Those exponents indicates that the data contains predictable components (seen in
part in their respective ACF), but they also explain the difficulty to predict this kind of data in the long
term. The exponents obtained are consistent with the ones observed in the literature. In [58] the MLE
obtained for their data set is 0.115, while the average MLE obtained by all of the data sets used in this
work is 0.116. The Lyapunov Exponents computed for both sets of wind time series provide a strong
indication that the underlying process that produce the data are chaotic.
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Table 1. Dominant Lyapunov exponents.

Time Series Minimum Lyapunov Exponent Maximum Lyapunov Exponent Average Lyapunov Exponent

20891 0.0557 0.1974 0.1035
22641 0.0773 0.1798 0.1290
22887 0.0444 0.1643 0.0885
23711 0.0889 0.1388 0.1111
24908 0.1026 0.1488 0.1263
27947 0.0197 0.1210 0.0662
28722 0.0561 0.1767 0.1083
29231 0.0814 0.1802 0.1140
30230 0.0789 0.1208 0.1064
37099 0.0959 0.1480 0.1176

aristeomercado 0.1038 0.1601 0.1298
cointzio 0.1132 0.2041 0.1520
corrales 0.0638 0.1330 0.1073
elfresno 0.0644 0.1457 0.1098
lapalma 0.1037 0.1195 0.1119
lapiedad 0.0601 0.1811 0.1174
malpais 0.1112 0.1573 0.1411

markazuza 0.0971 0.2094 0.1573
melchorocampo 0.0616 0.1864 0.1341

patzcuaro 0.0426 0.1590 0.0965

logistic map 0.3151 0.5921 0.4832
sine 0.0000 0.0000 0.0000

4.3. Experiments

An often required wind forecasting task is to forecast the wind speed for the following day.
In order to gather more performance information than just one execution of the different forecasting
algorithms, we perform a One Day Ahead forecast for the last 10 days of each time series. In performing
One Day Ahead (ODA) forecasting, the forecaster generates the number of samples contained in one
day of observations at a time.

After we have forecasted one whole day, we consider time advances and the next day of real wind
speed observation is available. Since we are forecasting for 10 days, the last 10 days of measures of each
data set were saved in the validation set; the rest of the data was used as training set. The sampling
period of the Russian stations is three hours, while the sampling period of the Mexican stations is one
hour. The number of samples used for training varied depending of the time series from 875 to 25,000
samples, while the length of the validation sets were 80 and 240 for the Russian and Mexican time
series, respectively.

4.3.1. Experiment Settings

Each technique has different modelling considerations; those considerations are described in the
following paragraphs, and the values used in the experiments are listed in Table 2.

ARIMA—The ARIMA implementation we used was the one included in the R statistical
package [66]. The order of the ARIMA model was estimated using the auto.arima function.

NN—To determine the NN parameters (m, τ, and ε) we used the deterministic approach described
by Kantz in [23]. The deterministic approach uses the Mutual Information algorithm to obtain τ and
the False Nearest Neighbors algorithm to find an optimal m; ε is found by testing the number of
neighbors found for an arbitrary ε value, which is updated by the rule ε← ε× 1.2 when not enough
neighbors are found.

NNDE—In NNDE the NN parameters are found by a DE optimization, where the evolutionary
individuals are vectors of the form [m, τ, ε]. Because of the stochastic nature of DE, this optimization
process is executed 30 independent times. The set of parameters that yield the least error score is the
one used to forecast.
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FF—This technique compiles a set of fuzzy rules that describe the time series by using delay
vectors of dimension m and time delay τ. These parameter values are set to the same as those obtained
by the deterministic method used by NN [23,24]. Since the time series contains outliers, FF uses a
simple filter which replaces any value greater than 6σ (σ is the standard deviation of the time series)
with the missing value indicator.

ANN-cGA—This method determines the optimal topology of a MLP using Compact Genetic
Algorithms. The optimization process consists in finding the optimal number of inputs (past
observations), the number of hidden neurons, and the learning algorithm.

EvoDAG—EvoDAG uses its default parameters and m is set to three days behind.
Table 2 shows the parameters used by the techniques for ODA forecasting. With the exception of

NNDE, all the forecasters use the same parameters. NNDE varies its parameters since the DE process
can obtain different parameters depending of the forecasting scenario.

Once the different forecasting models were trained, we proceeded to test their forecasts for the
proposed forecasting task.

Table 2. Parameters of the forecasting techniques for ODA.

Time Series NN Deterministic
[m, tau, epsilon]

NNDE MSE
[m, τ, ε]

NNDE SMAPE
[m, τ, ε]

ARIMA
(p, d, q)

ANN
[m, h, TM]

FF
[m, τ]

20891 [8, 1, 6.318] [23, 48, 6.121] [43, 51, 12.713] (1, 1, 5) [57, 24, bfgs] [8, 1, 20]
22641 [7, 6, 6.320] [45, 72, 10.599] [26, 95, 6.328] (0, 1, 5) [59, 39, bfgs] [7, 6, 20]
22887 [8, 13, 4.389] [36, 16, 7.653] [9, 1, 3.346] (3, 1, 2) [61, 64, bfgs] [8, 13, 20]
23711 [7, 5, 1.021] [6, 8, 0.000] [29, 69, 4.468] (1, 1, 1) [54, 35, bfgs] [7, 5, 20]
24908 [7, 1, 2.116] [28, 11, 2.941] [14, 100, 2.155] (3, 0, 3) [62, 59, bfgs] [7, 1, 20]
27947 [6, 1, 2.116] [18, 46, 14.602] [14, 50, 13.834] (2, 1, 4) [39, 37, bfgs] [6, 1, 20]
28722 [6, 1, 3.048] [42, 29, 9.348] [16, 20, 6.194] (3, 1, 1) [45, 47, bfgs] [6, 1, 20]
29231 [6, 5, 5.266] [50, 7, 8.753] [43, 7, 8.166] (5, 1, 2) [41, 35, bfgs] [6, 5, 20]
30230 [6, 1, 3.048] [17, 4, 9.849] [39, 29, 8.056] (1, 1, 5) [33, 25, bfgs] [6, 1, 20]
37099 [6, 1, 1.021] [16, 45, 7.132] [1, 49, 28.025] (2, 1, 3) [43, 63, bfgs] [6, 1, 20]

aristeomercado [8, 8, 10.920] [13, 5, 28.544] [7, 16, 22.724] (1, 0, 2) [16, 4, bfgs] [8, 8, 20]
cointzio [6, 6, 4.389] [2, 45, 15.820] [1, 29, 7.759] (2, 1, 3) [10, 2, bfgs] [6, 6, 20]
corrales [7, 6, 4.389] [3, 23, 10.155] [24, 1, 19.312] (0, 1, 4) [5, 60, rprop] [7, 6, 20]
elfresno [6, 9, 0.410] [5, 75, 16.560] [5, 36, 18.935] (3, 1, 4) [25, 16, gdx] [6, 9, 20]
lapalma [5, 5, 6.320] [1, 57, 0.018] [1, 40, 0.000] (0, 1, 5) [5, 21, cg] [5, 5, 20]
lapiedad [5, 10, 4.389] [2, 22, 8.457] [11, 2, 21.112] (2, 0, 5) [32, 6, gdm] [5, 10, 20]
malpais [9, 1, 116.842] [23, 97, 12.113] [41, 2, 19.531] (0, 1, 2) [64, 5, gdm] [9, 1, 20]

markazuza [5, 1, 2.540] [26, 1, 10.878] [24, 1, 10.878] (3, 1, 4) [53, 19, bfgs] [5, 1, 20]
melchorocampo [5, 1, 4.389] [2, 5, 1.269] [1, 59, 3.140] (1, 0, 2) [39, 15, rprop] [5, 1, 20]

patzcuaro [11, 1, 10.920] [2, 22, 5.827] [24, 1, 14.179] (5, 1, 0) [29, 3, rprop] [11, 1, 20]

4.4. Performance Analysis

For this comparison, 7 forecasters were used. Auto-Regressive Integrated Moving Average
(ARIMA), and Nearest Neighbors (NN) are well known forecasting techniques in the time series
area. Nearest Neighbors with Differential Evolution Optimization (NNDE), Fuzzy Forecasting (FF),
Artificial Neural Network with Compact Genetic Algorithm Optimization (ANN-cGA), and EvoDAG
are techniques proposed by the authors to tackle this forecasting problem.

As previously indicated, the Mexican Data Sets present missing values in both the training and
validation sets. To preserve the integrity of the results, when forecasting, if the value to predict is a
missing value that measure does not contribute to the error score of the forecaster.

To measure the performance of the forecasters, we used the Symmetric Mean Absolute Percentage
Error (SMAPE).

SMAPE is defined in Equation (7).

SMAPE =
100%

n

n

∑
t=1

| Ft − At |
(| At | + | Ft |)/2

(7)
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where A are the actual values, F are the forecasted values, and n is the number of samples in both sets.
SMAPE was selected as error measure because it allows to compare the error between data sets,

since it is expressed as a percentage. This can be also be done with the non-symmetric version of this
error measure (Mean Average Percentage Error—MAPE). However, the data sets used contain many
zero valued samples, which in MAPE lead to undetermined error values.

It is important to clarify that undetermined values can also occur with SMAPE. However, if
there is a sum of zeros in the denominator, it indicates that the actual and forecasted values are zero,
making the denominator and numerator of the fraction zero, which makes the contribution to the error
meaningless.

4.5. One Day Ahead Forecasting

The One Day Ahead forecasting scenario represents the forecasting task this article is addressing.
For this scenario each forecaster generates a day of estimations at a time. Once these forecasts are
made, one day of observations are taken from the validation set and are incorporated into the training
set (replacing the values introduced by the forecaster), and the process is repeated until 10 days of
forecasts are completed.

Table 3 shows the SMAPE scores of the 10 day forecasts produced by the different
forecasting techniques.

Table 3. SMAPE results for One Day Ahead (ODA) forecasting. Bold indicate the winning technique.

Station NNDE EvoDAG FF ANNCGA NN ARIMA

20891 33.552 42.287 47.349 177.667 40.701 52.485
22641 70.466 73.837 76.620 138.389 71.605 74.538
22887 91.541 94.351 123.836 162.067 100.261 183.042
23711 86.782 106.386 120.273 144.784 111.488 91.577
24908 90.196 147.510 144.755 183.813 146.980 138.607
27947 53.114 57.073 64.736 166.419 57.268 56.960
28722 74.403 83.761 88.769 167.003 84.692 82.507
29231 51.058 56.976 64.375 160.847 55.995 60.928
30230 125.952 132.347 147.326 168.304 134.553 170.713
37099 40.640 41.770 49.845 116.413 42.350 42.964

aristeomercado 38.259 49.938 62.502 189.804 37.395 48.956
cointzio 25.181 39.590 61.984 189.027 45.312 76.323
corrales 30.205 44.388 54.242 179.650 37.860 145.898
elfresno 38.378 56.528 36.649 187.003 49.125 42.472
lapalma 31.136 34.783 39.919 181.602 36.503 141.309
lapiedad 50.624 64.312 31.002 180.052 56.940 200.000
malpais 28.856 46.742 62.484 198.142 46.046 40.755

markazuza 36.916 51.388 62.080 154.063 49.003 113.731
melchorocampo 27.885 35.134 40.899 185.632 29.965 117.441

patzcuaro 39.728 83.065 91.997 187.654 50.734 84.692

NNDE produces the best scores in most stations, which indicates that, for these time series, it is
well suited to forecast many samples in advance, compared to the other forecasters (at least for this
particular forecasting task). Figure 8 presents a plot of the forecast of the winning model, NNDE, for
the malpais time series. As discussed earlier in the article, the quality of the data is not as one could
expect. Time Series contain noise, outliers, and missing data, not to count the fact that they are chaotic.
Those characteristics make them extremely difficult to forecast. Nonetheless, from the figure, we can
observe that the model closely predicts the cyclic behavior of the data, not being able to account for
the noise included in the validation set, nor the outliers.

Section 2 includes a discussion on Okumus et al.’s survey article, which provides errors obtained
in several works in the area. Those errors are reported for different forecasting tasks, using different
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error metrics, so we cannot objectively compare the performance of the methods we present in this
article with those presented in the articles included in the survey.
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Figure 8. Nearest Neoghbors with Differential Evolution (NNDE) Forecast for the Malpais
Validation Set.

5. Conclusions

A set of forecasting methods based on Soft Computing and the comparison of their performances,
using a set of wind speed time series available to the public, has been presented. The set of methods
used in the performance comparison are Nearest Neighbors (the original method, and a version
where its parameters are tuned by Differential Evolution—NNDE), Fuzzy Forecasting, Artificial
Neural Networks (designed and tuned by Compact Genetic Algorithms), and Genetic Programming
(EvoDAG). For the sake of comparison, we have included ARIMA (a non AI-based method).

The experiments were carried out using twenty time series with wind speed, ten of them
correspond to Russian weather stations and the other ten come from Mexican weather stations.
The Russian time series are sampled at intervals of 8 h and expressed as integers, while the Mexican
time series were sampled at intervals of one hour, using one decimal digit. The maximum exponents of
Lyapunov were calculated for each time series’, which show that the time series are chaotic. In summary,
the data we use for comparison are chaotic, contain noise, and have many missing values, therefore,
these time series are difficult to predict in the long term.

The forecasting task was to predict one day ahead, repeated for 10 days. This forecasting task
represents 80 measurements for the Russian and 240 for the Mexican time series.

In addition to comparing the performance of forecasting techniques, the use of phase space
reconstruction to determine the important contributions of the past as input to forecasting models
was presented. Two parameters from the reconstruction process can be used in time series forecasting
methods: m (the embeding dimension) and τ (the time delay or sub-sampling constant). These
parameters provide an insight into what part of the history of the time series can be used in the
regression process. Nevertheless, most of the work on forecasting using ANN, just considers some
window in the past of the history, normally given by the experience of experts in the application field,
and no sub-sampling is used at all. Other statistical methods provide information about what part



Energies 2019, 12, 3545 16 of 19

of the history of the time series is of importance in the forecasting process. For instance, ARIMA
frequently uses the information provided by the ACF and PACF functions.

The results of the performance comparison show that NNDE outperforms the other methods in a
vast majority of cases for OSA forecasting and in more than half in ODA forecasting. It is well known
that the results of a performance comparison depend heavily on the error criterion used to measure
the performance of the forecasting techniques. In this case, we used MSE and SMAPE; NNDE won
under both error functions, which places this technique as the most suitable for the forecasting tasks
used in this comparison.

We expect the results of this study to be useful for the renewable energy and time series forecasting
scientific communities.
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Abbreviations

The following abbreviations, listed in alphabetical order, were used in this manuscript:

ACF Auto-Correlation Function
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
ANN-cGA ANN with cGA
AR Auto-regressive
ARMA AutoRegressive Moving Average
ARIMA AutoRegressive Integrated Moving Average
cGA Compact Genetic Algorithms
EvoDAG Evolving Directed Acyclic Graph
FF Fuzzy Forecast
FLT Fuzzy Linguistic Terms
FR Fuzzy Rules
GWPPT Generalized Wind Power Prediction Tool
MAPE Mean Average Percentage Error
MSE Mean Square Error
NARX Nonlinear Auto-regressive Exogenous Artificial Neural Networks
NN Nearest Neighbors
NNDE Nearest Neoghbors with Differential Evolution
ODA One Day Ahead
OLS Ordinary Least Squares
PDE Partial Differential Equations
SMAPE Symmetric Mean Average Percentage Error
WPPT Wind Power Prediction Tool
RMSE Root Mean Squared Error
VAR Vector Auto-regressive
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